
Arthur C. Norman
Raffaele Vitolo

Inside Reduce

i

Inside Reduce

This document is part of the Reduce project, see
http://reduce-algebra.sf.net and may be used, copied and updated
on the terms set by the BSD license used for the bulk of Reduce. In
particular you are free to use any code-fragments included here under
those terms.

http://reduce-algebra.sf.net

Preface

A respectable Preface should contain a “story” to tell people as to why they
should read this and what it will get them ready to do. OK, so there is
this thing called Reduce and you want to extend it a bit or get a bit further
inside. It is too big and messy to understand all in one gulp, and too
mysterious for you to do all the complicated stuff you dream of all in week
one, but here is a way to get your toes slightly wet in the sea of confusion,
and a way to let you observe that even you can do some stuff with it. We
thought that embedding a number of tiny examples would help.

Reduce is well documented. The user’s guide [2] contains all the ba-
sic material, while the books [3, 1] are much deeper introductions to the
algebraic mode and the symbolic mode of Reduce, respectively. We hope
that people will read this alongside the “Reduce Symbolic Mode Primer”
by Melenk [5] which provides overlapping coverage and a different voice to
explain aspects of system internals, and believe that there is more than
enough to be explained to make it reasonable to have (at least) two places
where the information is collected.

There are two more texts that it seems proper to note. “Reduce: Soft-
ware for Algebraic Computation” [6] by Gerhard Rayna, provides broad
coverage, but related to the state of Reduce in the run-up to 1987 and so
in various details it may now not be fully up to date. Jed Marti’s book
“RLISP ’88: An Evolutionary Approach to Program Design and Reuse” [4]
describes the low-level programming language used by Reduce, ie rlisp. It
can be useful for understanding both the syntax used at that level, how it
related to the Lisp abstractions that underpin it and how it could be used.
However if focusses on a dialect (rlisp88) which the bulk of Reduce ended
up not adopting. Support for rlisp88 is still available within Reduce in
that the relevant parser can be loaded as one of the Reduce optional pack-
ages, but the main body of the code does not make use of it.

iii

iv PREFACE

Reduce is free software. This implies that everybody can learn its deep
structure from the source code. Unfortunately, while this kind of activity
is certainly possible for every user who would like to develop a greater
understanding of Reduce, it is not satisfactorily supported by any of the
above textbooks.

Here is the point where “Inside Reduce” becomes useful: it is a textbook
devoted to all aspects of Reduce which lie into its source code and are
currently undocumented, forgotten, or simply unknown.

The text was born as a sequence of conversations in which one of us
(RV) wanted to understand many undocumented aspects of Reduce and
the other of us (ACN) was so kind to explain them to him.

Contents

Preface iii

Contents v

1 Introduction 1

2 Building Reduce 9

2.1 Ready-to-use binaries . 9

2.2 Fetching the source code . 10

2.3 GNU/Linux . 11

2.4 OS X (Macintosh) . 17

2.5 Windows . 17

2.6 On portability of Reduce source code 18

2.7 Less supported variants . 20

3 The Reduce source code 23

3.1 The structure of Reduce source code 23

3.2 An overview of how Reduce gets built 32

3.3 The PSL Lisp system . 33

3.4 The CSL interpreter . 34

3.5 Algebraic and Symbolic mode 37

3.6 Central parts of Symbolic Mode Reduce 38

3.7 On the legacy feature of upper case coding 40

3.8 Data structure in Reduce . 43

3.9 Higher level Reduce packages 47

3.10 Finding out specific features in the Reduce sources 47

3.11 Finding the documentation of Reduce 48

v

vi CONTENTS

4 Low-level features of Reduce for Programmers 51
4.1 Extending Reduce with new operators. 51
4.2 Properties of symbols and their use 57
4.3 A bit on parsing . 60
4.4 A bit on domains . 62
4.5 Evaluation, Simplification and Conversion 63
4.6 Substitution . 66
4.7 Adding a new module to Reduce 68
4.8 File and Directory management, Shell access 72

Bibliography 75

Chapter 1

Introduction: the layer
structure of Reduce

Like any well-written large software package, Reduce can be thought of
as having a number of layers. Initially and often generally end-users will
only interact with the very top one of these. This document is to explain
something of the lower ones, because since Reduce is an Open Source project
everybody is able to interact with all of them. Some may investigate low
levels purely for interest, others because they find it allows them to improve
performance of their code, solve problems that they otherwise could not or
fix errors in the existing code.

Before discussing the global design of Reduce it is perhaps useful to
introduce one particular topic: the distinction between “algebraic” and
“symbolic” mode utterances in Reduce.

A normal user of Reduce is presented with a programming language in
which they will express their calculation, perhaps defining a few procedures
but building their work on primitives such as +, -, and Reduce built-in
algebraic operators such as int and df. The values that they work with
will be algebraic formulae, and the results they get will also be algebraic. It
may of course happen that sometimes an algebraic form is merely a number,
but at any time that number might be combined with an indeterminate such
as x to create a polynomial or be used as an argument to an unspecified
operator f to build up something more complicated. When names are used
in this mode then if they have been given a value then their value is used
– i.e. they are treated as variables. If they have not been given a value
they are left present in the result as indeterminates. You could try out the

1

2 CHAPTER 1. INTRODUCTION

simple sequence

r := x + a; % Value is the formula a + x
a := 3; % Now give a the value 3
rˆ3; % r is now xˆ3 + 9*xˆ2 + 27*x + 27

Inside Reduce these algebraic expressions have to be represented as
more or less elaborate data-structures. For instance it happens that the
value of r in the above turns out to be a structures that can be written
as (!*sq ((((a . 1) . 1) ((x . 1) . 1)) . 1) nil)! This is a stan-
dardised form used inside Reduce as part of the process of simplification.
The bulk of Reduce is a big pile of code that manipulates these internal
representations so as to decompose, combine and reformat them as effi-
ciently as the code authors could manage things. If you wish to look inside
Reduce to inspect this code (and perhaps in due course to correct or en-
hance it, or to add your own contributions) you will naturally ask “What
language is used for all the code that works with the internal form of data?”.
The answer is that it a language with just about the same syntax as the
Reduce user-mode interface, but use in what is known as “symbolic” rather
than “algebraic” mode. An effect is that the values you work with are the
raw data-structures that are used within Reduce. The operators you have
available are all the procedures defined in the Reduce source code (plus a
further range inherited from an underlying Lisp system). Data can consist
of a combination of numbers, symbols, strings and lists. If you write a
simple symbol such as “x” then in symbolic mode that will be expected to
have been given a value earlier in your code. A notation using a quote mark
can be used to insert raw data into your code, so here is the symbolic mode
sequence you would need to use to achieve the trivial effect of the algebraic
mode example above:

setk(’r, aeval list(’plus, ’x, ’a));
setk(’a, aeval 3);
aeval list(’expt, ’r, 3);

This at first looks horrendous and discouraging, but in reality it is all tol-
erably straightforward once you grasp the nature of the various internal
representations that Reduce uses. Part of the intent of this document is
to help you get to grips both with symbolic mode programming in Reduce

3

and the ways in which procedures implemented at that low (but powerful)
level can be provided with interfaces so that they can then be used easily
by people who do not want to get inside the system and who will hence
only ever use algebraic mode.

The view of Reduce presented here thinks in terms of the following layers
of abstraction:

1. The hardware of the computer you are running on. At the
moment Reduce can be compiled for 32 as well as 64 bit machines.
On the other hand there can be concerns at this level of (the potential
for) parallelism, the amount of memory and the speed of various low
level operations. For instance at the time of writing this the existing
implementations of Reduce do not have good ways of gaining benefit
from multi-core processors, but essentially all hardware these days
provides that capability. Reduce is of course far from being unique
in this respect, but this very low level issue may eventually generate
need for re-work at all the higher levels.

2. The operating system and environment. At present this broadly
comes down to Windows, OS X, Linux and Android. Historically
Reduce took the view that it would include capabilities that it could
support on all the platforms that mattered to it. Doing so natu-
rally led to it not taking advantage of the special unique capabilities
that each operating system provided. . . a particular area where having
portable code used to be really hard was in implementing graphical
user interfaces. The currently stable versions of Reduce are able to
provide (almost) the same experience on Windows and Linux but
Macintosh users are liable to view what they get as at best ugly and
archaic. Android is sufficiently different that there is not yet a full
version of the system available, but a “technology demonstration”
has been built. At present Reduce has no clear model for exploiting
touch-screens. As with (1) there are major challenges that could call
for large amounts of re-design and re-work at a level that is mostly
rather remote from the “algebra” aspect of Reduce.

3. A programming language kernel. Any algebra system needs at
its core facilities to interact with the operating system (eg to access
files and the screen), to perform arithmetic (including arbitrary preci-
sion integer work), to manage memory in a flexible way (the technical

4 CHAPTER 1. INTRODUCTION

term “garbage collection” is key here) and to support compilation
of higher level code into something that can run efficiently. Reduce

started by using an existing language, Lisp, to provide this level of
support, and this has led to confusion when many people have asserted
that “Reduce is written in Lisp”. These days the “Lisp systems” used
with Reduce are (to a good approximation) tuned and maintained
almost exclusively to be kernels for Reduce and not to be used by
any free-standing Lisp programmers that may remain in the wild. In
1969 Tony Hearn (who created Reduce) documented a dialect that
he dubbed “Standard Lisp” that Reduce was to rely on, and in 1978
this was given a major refresh. The Standard Lisp Report by J. B.
Marti, A. C. Hearn, M. L. Griss, and C. Griss has since then been the
official documentation for that level of Reduce’s internal structure.
But since then the rest of the Lisp world moved seriously sideways
with the introduction of Common Lisp and the subsequent fading of
the language from widespread use. There are two particular imple-
mentations of Standard Lisp that support Reduce: PSL and CSL. In
the years since 1979 these have, between them, informally agreed to
support various capabilities beyond the Standard Lisp Report. These
extras are not well documented anywhere! An example is that in the
current systems the key built-in names are spelt in lower case, while
in 1979 the style and tradition involved use of upper case everywhere
(see the discussion in Section 3.7). Both PSL and CSL have been op-
timised for use with Reduce, but in the whole of the Reduce sources
there are only a few hundred lines of Lisp-syntax code visible, and
those are just used while bootstrapping Reduce into life. So the two
Lisp systems exist to provide the capabilities noted at the start of this
section and to isolate the bulk of Reduce from most operating system
issues.

4. rlisp. Almost all of Reduce is coded in its own private language
rlisp. This is sometimes also referred to as “symbolic mode Reduce”.
It provides a syntax that is styled after the programming languages
in common use in the 1970s where the primitive operations available
are the ones inherited from its Lisp underpinnings. There are two
distinct issues in becoming fluent in the use of rlisp. The first is the
syntax of the language. It is in fact (deliberately) almost identical to
the normal user-level notation that Reduce provides, and since it is

5

a simple language getting started with it ought to be easy. Here are
some examples illustrating some of the more important constructs:

% This procedure takes four arguments (which must all
% be numbers) and evaluates them as a quadratic in x.
symbolic procedure quadratic(a, b, c, x);

a*xˆ2 + b*x + c;

% Procedures with only one argument can omit
% paretheses around it.
symbolic procedure moan_if_negative z;
% The "error" function has a first argument that
% is supposed to be an error code,
% and a second that is a message.
if z < 0 then error(0, "value is negative") else sqrt z;

symbolic procedure reverse_a_list u;
begin % Start a block. Think "{" from C or Java

scalar v; % declare a local variable
while not null u do
<<

v := car u . v;
u := cdr u

>>; % "<<...>>" is a light-weight block
return v

end;

The above used functions not, null, car and cdr from Lisp. So here
is a moment to talk about the data types available in rlisp. Note
that the scalar notation that introduces a local variables, and all
the procedure headers that specify arguments do not declare types.
rlisp does some basic type-checking at run-time, so if you passed
non-numeric values to the quadratic function there would be a run-
time complaint. The available types are:

6 CHAPTER 1. INTRODUCTION

integer (with effectively no limit to magnitude)
floating point (using IEEE 64-bit machine precision)
strings (eg “Hello” or “value is negative”. Mainly just used

for printing not in computation)
symbols (see below)
dotted pairs (see below)
other things (for specialist use! Eg vectors)

A symbol is something that has a name. Procedure and function
names and all the variables in rlisp code are in fact symbols, so
quadratic, b, v, null and so on are. Even the keywords like begin

and end and operator and syntax marks like +, *, :=, << and >> really
name symbols at some level. If you just write X in your rlisp code
that will refer to (the value of) the symbol whose name is X. If you
want to talk about X itself you have to quote it. So

v := ’X;

sets a variable v to have the symbol X as its value. If you want to use
a symbol whose name includes characters beyond letters and digits
you need to escape them using an exclamation mark:

v := ’!<!<; % symbol whose name is "<<"
w := ’!2; % symbol called "2" as distinct from

% the number 2
x := ’!X; % an upper case X, since by default

% input is folded to lower case.
y := ’!"not! a! string!"; % Compare with "is a string"!

A (dotted) pair is an ordered pair of items. The function that creates
pairs is called cons, but rlisp allows an infix (or an operator whose
two arguments are written to the left and to the right of its symbol)
. to be used for that.

v := 1 . 3; % Not the floating point value 1.3!
w := ’left . ’right;
x := ’first . (’second . (’third . nil));

The final example there suggests that pairs can be used to model
lists. The convention is that the atom nil (which has itself as its

7

value when you use it as a variable) terminated a list. This is such a
common usage that special syntax and functions support it:

v := ’(a fixed list of length six);
w := list(’a, ’variable, ’list, ’including, v);
x := list(’a . 1, ’b . ’value_to_go_with_b, ’w . w);

The functions car and cdr retrieve the two parts from a pair. The
names of these functions derive from the early history of Lisp. But
they lend themselves to a convenient shorthand where e.g. car cdr x

can be replaced by cadr x and in the context of the current paragraph
that might be (b . value_associated_with_b).

Basically all of Reduce’s internal workings are built up using nested
lists and pairs with symbols and numbers as leaf elements.

Chapter 2

Building Reduce

2.1 Ready-to-use binaries

A Reduce distribution, ready to be run, can be downloaded for several
architectures (Windows, Mac, GNU/Linux) at the official Reduce website,
hosted at Sourceforge [7].

Simple users will often be content with whatever pre-built binaries are
available there – regardless of exact details of how up to date or how neatly
packaged they are. However there are at least four reasons that can make
it seem desirable to build your own copy of Reduce from source code:

1. Errors may have been corrected in the Reduce sources or new features
added since the last set of binaries was put in the release area. If
the bugs or features relate to a style of use of Reduce that does not
concern you (for instance the main enhancements have been in one
of the specialist packages that implement algebraic transforms that
are to do with an area of mathematics remote from the ones you are
involved with) this may not matter, but sometimes your particular
use will really need the latest version;

2. You report a problem to the Reduce mailing list and get a response
that asks if the behaviour you describe still occurs using the very
latest revision;

3. You are minded to make changes to the Reduce source code. This
could be to improve its clarity or performance, to correct deficiencies

9

10 CHAPTER 2. BUILDING REDUCE

or to add brand new capabilities. The existing Reduce developers
would like to encourage more people to join in in this manner;

4. You adhere to the philosophy that if you are going to rely on the
results calculated by some software package then in principle at least
you should be in a position to understand and check its behaviour
through and through.

Using subversion to fetch and update the source code and building
everything for yourself can ensure that you have the very latest set of addi-
tions and bug fixes. This chapter is intended to supply the instruction for
building Reduce from its source code.

2.2 Fetching the source code

The source code of Reduce is in the sourceforge.net hosting website [7].
All its files are under a revision control system, Subversion [8]. In order
to get the latest version of all files you shall have the program subversion

installed on your computer. The program can be used from a terminal,
by command-line instructions, or by a graphical user interface. There are
many of them, see the links at [8].

The command to get the files will be given on the sourceforge web-site
under the “code” tab. For a read-only copy at the time of preparation of
this document the command was1

svn checkout \

svn://svn.code.sf.net/p/reduce-algebra/code/trunk \

reduce-algebra

If you obtain the source code in some other way then provided it is up
to date and complete the same instructions should apply. In general the
biggest challenge when building Reduce tends to be in ensuring that all the
necessary tools and development libraries are installed: once they are in
place the actual building of Reduce will usually be straightforward.

It may happen that the latest development version gets broken for some
reasons (usually mistakes/misprints in the last changes to the code) and

1if you look carefully at the sourceforge site you can find slightly different URLs to
use that could be better if you were joining the Reduce maintenance team and so would
be contributing updates.

sourceforge.net

2.3. GNU/LINUX 11

it is not possible to successfully build Reduce. Then a good idea is to
use a previous version (or ‘revision’) that it is known to work. In order to
download the revision number ‘1234’ the following command shall be issued

svn checkout \

svn://svn.code.sf.net/p/reduce-algebra/code/trunk@1234 \

reduce-algebra

if you need to do a full fresh checkout, or

svn -r 1234 update

to update an existing set of files to the given revision number; here ‘update’
can also mean ‘go back to a previous revision’.

2.3 GNU/Linux

The recipes given here may also apply to various versions of Unix and
systems in the BSD family. But various GNU tools might need installing
and in the worst case you will need to do that by fetching their source files
and building them first.

At a command prompt select the Reduce trunk source directory as cur-
rent. If you look you should see it contains further directories called csl,
psl, packages and scripts (as well as various other stuff). If you are
going to build the CSL version of Reduce you should ensure that you have
at least

• the GNU C/C++ compiler g++;

• the GNU make utility for automating compilation of source code;

• autoconf and automake for the automatic generation of configuration
files and make scripts;

• the X development libraries libx11-dev, libXext-dev,
libXft2-dev;

• the screen addressing/cursor control library libncuses5-dev.

12 CHAPTER 2. BUILDING REDUCE

When testing Reduce it is also desirable to have the GNU version of a time

command installed. The names for packages listed here are representative
and may vary from one Linux installation to another: the key issue is that
header files and other material needed for developing C and C++ code using
various libraries will be required. As an attempt to make things easier to
set up there is a script that can be run as

scripts/csl-sanity-check.sh

that checks (most of) what Reduce requires. If it succeeds it should compile
some code and end up displaying a window on your screen. If you have
trouble with the main body of Reduce and can not understand the messages
you see go back and try this script since it may provide clearer messages
from a simpler attempt to build things!

With prerequisites satisfied the building of Reduce can be done in a
small number of steps.

1. svn update

This command is used if you have fetched Reduce using subversion,
and it will ensure that the version you have locally is brought up
to date with any recent corrections or upgrades from the sourceforge
site. If you have altered any files locally then subversion tries to
merge updates from the central repository with ones you have made,
and often that works well. If not then you need to read the subversion
documentation to see how to recover, but if you had altered a file (say
packages/subpackage/altered.red) you can try the recipe

a) cp packages/subpackages/altered.red somewhere-safe.red

b) svn revert packages/subpackage/altered.red

c) merge your changes back from somewhere-safe.red. . .

2. scripts/stamp.sh

When subversion fetches or updates files it concerns itself just with
their contents, not with date-stamps. This can sometimes confuse
the autoconf tools, and at the very least can lead to some redundant
work. To end up slightly saner run the script mentioned here which
simply resets timestamps on some build files so that there is (much)
less probability that your computer will try to re-run autoconf and

2.3. GNU/LINUX 13

automake. Actually you only even slightly need to do this after either
a first checkout of the code or if fetching an update that changed one
of the files called configure.ac, configure, Makefile.am or one of
their close relatives.

3. ./configure --with-csl (and/or --with-psl)

The standard arrangement for building many open source programs
involves running a script called configure. This detects all sorts
of details about the computer you are building on and creates files
called Makefile in a number of places. The configure line can use
--with-psl instead to build a PSL-based version of Reduce, and
there are a number of other options that can go on the end of the line,
of which perhaps the most important is --enable-debug. This make
the C/C++ compiler build with debug options so that it becomes
possible for low-level programmers to use gdb or another debugger to
hunt bad crashes way down at that level.

Running the configure script with --help should list all the options it
is aware of, but please do not randomly try obscure combinations of
options – some may be little more than traces of earlier experiments.

Note that merely running the configuration script can take a minute
or two (and substantially longer on Windows), and that if you do not
have all the necessary development libraries installed it could fail in a
way that may initially appear obscure. In addition of the previously
mentioned csl-sanity-check.sh script please look in the log file(s)
that configure creates2 and look for evidence of missing header files
or libraries. Install them and try again!

In general you only need to run configure once when you first install
the Reduce sources. On subsequent occasions and even after use of
“svn update” to refresh things you can omit this step.

4. make

The main part of building Reduce occurs here. The very first time you
do this it will be necessary to build various sub-libraries that Reduce
relies on, and that can feel painfully slow – so have patience or several
cups of coffee.

2principally any file called config.log in any part of the tree of build directories

14 CHAPTER 2. BUILDING REDUCE

If all goes well you can then launch Reduce using either bin/redcsl or
bin/redpsl (depending on whether you build a CSL or PSL version).

5. Recovering if make fails.

The CSL version of Reduce builds all its components within a di-
rectory called cslbuild whereas the PSL version uses the directory
pslbuild. In each case they put things in a subdirectory of that
place names for the current computer’s configuration, so for instance
you may find a directory cslbuild/x86_64-pc-windows-debug or
pslbuild/i686-unkown-ubuntu14.04. The first and easiest thing to
try if things go wrong is to get a fresh start by just deleting that
directory and re-running the configure script. If the failure had been
because you had not (the first time) had enough build tools or libraries
installed but you have now corrected things that may help.

Otherwise you will need to find the build log files and use them to
track just what the problem was so you can either fix it yourself
or report it to the central maintainers. In either cslbuild/xxx or
pslbuild/xxx the file config.log should end up as record of what the
configure script did. For csl there are also config.log files in
the further sub-directories crlibm, fox (or wxWidgets) and csl. If
the failure happened at configure time the evidence is liable to be
hidden in one of those, interleaved with a lot of other material. If
configuration worked then make will run scripts that leave log files in
pslbuild/xxx/buildlogs or cslbuild/xxx/csl/buildlogs. Iden-
tifying the most recent file in those directories can sometimes let you
home in on where the failure arose, and with luck there will be a mes-
sage that gives some clue as to what had gone wrong and hence what
might be done to correct it. Until you find the key error message you
do not know what to try to do to correct things.

In general you want to find the first error that arose during the build
attempt – once one thing has gone wrong it is reasonable to expect
a cascade of follow-on confusion. Looking at date-stamps on files can
sometimes help you see what order things happened in.

Pretty much anything that is listed here as a “potential trouble spot,
so watch out” will (we hope!) be addressed so that soon it is not. It
may nevertheless be useful to comment a little on the build process
in case that helps you navigate and track down an issue. With psl

2.3. GNU/LINUX 15

the build progresses by fetching a read-build binary of the psl Lisp
system and some of its modules, and it uses that to create a provi-
sional version of a subset of Reduce in red/bootstrap.img. The log
file from this will be in buildlogs/bootstrap.blg. This initial ver-
sion of Reduce is then used to compile further Reduce packages and
eventually red/reduce.img is created.

For csl everything is built all the way from source. This obviously
takes longer, but you may take a view that it puts you in complete
control of everything. Firstly the crlibm and fox libraries have to
be build and their binaries installed in the correct place within the
Reduce build tree. If you are uncertain about their state you should
find test or sample for both – with luck when you look for it the
location and usage will be obvious. When that has been done build-
ing continues in the cslbuild/xxx/csl directory. On the first time
you build or if Reduce source files have changed a version called
bootstrapreduce is built – see buildlogs/bootstrapreduce.log.
That is used to translate some of the most critical parts of Reduce

into C code (buildlogs/c-code.log). This C code is kept in
cslbuild/generated-c. Then the main Reduce executable can be
compiled (using the generated C) and it finally creates reduce.img

leaving buildlogs/reduce.log as a record. If there is some chance
that the C code has got out of step then make full-c-code will
force it up to date. Sometimes when files are removed from the main
Reduce sources or renamed the make system can retain dependency
information and fail to work. If you get a complaint saying that a
file is needed and on inspection it is one that used to exist in the
sources but a recent update renamed or deleted it then check the files
*.dep and delete the line that mentions the offending file. Of course
if you merely deleted the whole cslbuild directory and re-ran the
configure/make sequence that would also achieve the desired effect
– but it could be a lot slower.

For the Windows version of Reduce there are additional complications
in that there is an attempt to build up to six versions of the Reduce

executable. This dreadful situation is to cover both 32- and 64-bit
Windows, to cope with people who wish to launch Reduce by double
clicking on an icon and those who may run of from either a native
Windows console (i.e. command prompt) or a Cygwin terminal. If

16 CHAPTER 2. BUILDING REDUCE

something goes wrong (for instance one of the builds is interrupted
before it completed) it can sometimes help to enter each of the sep-
arate build directories in turn and go make in each. If trying that it
will be best to build the Cygwin version before the native Windows
one.

As with all debugging, if things do not work first time you need to
look to find out where the evidence is and apply calm reasoning to
narrow down the cause! At least you have access to all the source
code and all the build scripts so that you (or an expert friend) is in a
position to investigate in detail!

It is perhaps proper to be aware that a version of the Reduce sources
fetched from the subversion repository will be the latest and most up
to date set of files you can obtain, and is liable to have corrections
to issues that have been raised – however sometimes it may be in a
transitional state when a change has been made that is intended to
fix problems but that in fact introduces others. If you encounter diffi-
culties you may wish to browse the repository records on sourceforge
to see which files have changed recently and consider whether the
problem you observe might relate to that. It has also been the case
in the past that if you update or replace your operating system that
can occasionally introduce incompatibilities. This is particularly true
of you install a very new version of an operating system that other
developers may not yet have had time to investigate. Please report
problems so that they can be fixed not just for you but for everybody.

6. scripts/testall.sh

Having built Reduce it is prudent to check it. The testall script
tries to run all the standard tests and compares the output created
on your machine with reference logs deposited at Sourceforge. There
can sometimes be minor timing-related differences in output that show
up as discrepancies and from time to time the Sourceforge reference
logs may not quite keep up with the main source files kept there,
but if this script runs it can give you good confidence that things are
basically in a good state, and can help direct you towards any areas
that need investigation. The argument --with-csl or --with-psl

instructs this script to check just one version of Reduce, and thus
if you have only configured and built one version you should specify

2.4. OS X (MACINTOSH) 17

it. However if you are writing code that you hope to be useful for
everybody you should test it on both the CSL and PSL versions of
Reduce, and when you run the testall script you omit any arguments
and it checks both versions.

2.4 OS X (Macintosh)

On a Macintosh the recipe is basically as for Linux. However you should
be aware that the current version of Reduce uses X11 when it attempts
a windowed interface, and some of the development libraries it requires
may not be supported by Apple. The first thing you will need will be the
command-line tools for Xcode. You can either then fetch and install the
macports package and use that to help you install the other components
that Reduce relies on – or you can do all that manually yourself. The
trunk/csl/cslbase directory contains a file macports.my.list... that
lists the collection of ports that one of us installed on a Macintosh at one
stage to get to a state where Reduce could be built. Since OS X and Xcode

will change from time to time there is no guarantee that this list will be
absolutely definitive, but it should provide a good starting point.

The configure script provides an experimental option that is not useful
for end-users but that I hope some Macintosh enthusiast will feel motivated
to help work on. This is --with-wx. It is intended that eventually that will
build a version of Reduce using the wxWidgets toolkit rather than the FOX

one, and wxWidgets provides native Macintosh support. So far the code
there is seriously incomplete and in need of helpers to move it forward so
that eventually a proper Macintosh (possibly including iOS) port of Reduce
can exist. Volunteers please step forward!

2.5 Windows

For Windows the build system that is supported uses the cygwin

package, freely downloadable from www.cygwin.com, to provide a
shell environment similar to the Linux/BSD/Unix one where Reduce

can be build using configure and make. The commands in
scripts/cygwin-sanity-check.sh are an attempt to verify that sufficient
of cygwin’s optional packages have been installed that you have a good

www.cygwin.com

18 CHAPTER 2. BUILDING REDUCE

chance of success. As with the list of macports in the Macintosh case there
will always be a possibility that this list falls out of date, but despite that
it can greatly reduce initial pain by getting you at the very least close to a
state where everything should work.

The build sequences on Windows are especially convoluted because
there are a number of ways in which Windows may be used. The file
csl/cslbase/gui-or-not.txt explains some of this, but the existence of
both 32 and 64-bit versions of Windows itself and of cygwin (eg one can
have either a 32-bit or a 64-bit cygwin shell on a 64-bit Windows) makes
life messy. As a result of this the build sequences for Reduce are set up
so that they (automatically) configure and build several slightly different
versions of Reduce, and when you try to launch Reduce it should probe
its context and decide on which one is best to use in the circumstances.
Thus you may end up using not just gcc, but also i686-w64-mingw32-gcc

and x86_64-w64-mings32-gcc. Recent versions also like to have an instal-
lation of the 64-bit cygwin variant present, but note that most testing is
done using the 32-bit cygwin so that is what you shall try first.

Also for technical reasons the configure scripts tend to run a lot slower
under Cygwin than they do on Linux. This relates to issues in simulating a
Linux “fork” operation on Windows. So especially for a first build you will
need plenty of patience!

There is no special reason why the code for the CSL kernel should not
compile using Microsoft Visual C or the Intel C compiler (or indeed any
other up to date compiler) however at present the Reduce project does not
provide configuration files for building in any context other than the one
using (GNU) make. If you construct some project build files in a form where
they would be likely to be of use to others then please consider contributing
them back to the project – but when you do so think hard about how they
may need to cope with varying computer configurations, with files stored
in different locations on disc and with the issues that arise when compilers
and the like are updated.

2.6 On portability of Reduce source code

The list of architectures where Reduce has been successfully built would be
quite a long one. Since Reduce is quite portable it is worth just to try to
build Reduce on a particular architecture and, in case of problems (eg if

2.6. ON PORTABILITY OF REDUCE SOURCE CODE 19

there was a rather recent operating system upgrade), refer to the developers’
mailing list to try to get them sorted out.

The PSL version keeps its sets of ports in trunk/psl, and
trunk/psl/dist/kernel is liable to be the best place to watch. Sometimes
a new port will arrive there in an unfinished or “alpha” state. Sometimes an
old port will remain there with little testing and maintenance. There will
be other (older) ports that could be revived if there was sufficient demand.

For CSL the system is intended to run on any computer that will support
the GNU build tools (gnu make, automake, autoconf) and a reliable C/C++
compiler. It is generally tested using gcc and clang. While there should
be no fundamental reasons it could not be built using Microsoft, Intel or
some other compiler the integration of those into its build scripts has not
been investigated. For use with a GUI it will use the Windows normal
arrangement on a Microsoft platform or X11 elsewhere (including at present
on a Macintosh). Over the years it has been built and run at least once on
a rather large range of Unix-like platforms including ones from HP, SGI,
Sun and a number of smaller vendors. Also in the past customised versions
(which were created as technology demonstrations not for serious use) ran
on a Linksys router and on a HP iPaq organiser! Successful tests were also
run using the Hercules emulator for the IBM z/Architecture. But anybody
wishing to use any of these or some new specialist platform might expect
to need to be ready to make minor adjustments to the code.

At the time of writing the main testing is done on (64-bit) Linux, Win-
dows (8.1), a Macintosh and slightly less frequently on a Raspberry pi. It
is expected that BSD-family systems will not cause trouble. The Windows
version can be built for either 32 or 64-bit use and to run either natively
and directly under Windows or to be launched via a Cygwin (32 or 64-bit)
shell. The Linux versions should build equally well on 32 or 64-bit plat-
forms. Image files created on any of these platforms should reload on any
other - regardless of discrepancies in word-length or byte order.

One of the strengths of Reduce is that if at any time one of the CSL
or PSL variants give trouble on a particular platform it may be possible to
try the other!

20 CHAPTER 2. BUILDING REDUCE

2.7 Less supported variants

The main versions of Reduce build the while of the algebra system using
either the CSL or PSL Lisp system. With CSL the code uses a graphics
library called FOX to support some sort of GUI. There are a range of other
configurations that are possible. Some represent experimental work by the
developers and are not ready for prime time – bu in some such cases it would
be really good to have new volunteers to help complete the work. Others
are special versions that were either created to make a technical point or
to support some particular user or project, and these may not always be
up to date an workable. There are brief notes about some of these in the
commentary on the Reduce source tree, but a brief overview here may also
help.

The three main categories of “specialist versions” may be illustrated as
follows:

new-embedded At times some users have wanted to include the whole of Reduce as
a component within some larger software package. This could be for
teaching, as a larger algebraic/numeric package or to do with opti-
misation. Each case may have different needs, but nevertheless the
common feature will be that the large project needs to pass alge-
braic calculations down to Reduce and get back answers. Reduce will
not be expected to supply any user interface. The new-embedded di-
rectory provides a prototype for support for this and is a successor
to embedded, an earlier attempt. It uses a dramatically simplified
Reduce build process (ie you just compile a set of C files together)
and there are entrypoints into the C library that is thereby created
that allow the caller to pass things into the Lisp/Reduce world and to
retrieve results. The limitations and oddities of interfacing may not
all be immediately obvious, but there has been success in the past.
Anybody wishing to use these needs to be willing to delve deep into
C code and should discuss their needs and capabilities with some of
the Reduce developers. The expectation is that because their own
code is some package already bigger than Reduce that they are pretty
competent and experienced!

jlisp and jslisp The worlds of Android and the web might also like to embed Reduce.
Doing this could sometimes be done via a native code option that
could use CSL or PSL almost directly, but there is code in the full

2.7. LESS SUPPORTED VARIANTS 21

source tree that implements the Lisp that Reduce needs as Java code.
This has been used to provide an initial Android application that
uses Reduce to implement a form of algebraic calculator on Android.
That is certainly sufficient to prove that if somebody were to design
a more general touch-screen interface for Reduce that could also be
delivered on Android, or indeed any other platform supporting the
Java language. The Java version tends to be significantly slower than
either CSL or PSL, and may not always be kept as up to date, but it
could be a good basis for experimentation. The Javascript port was
created by passing the Java version through an automatic translator
and obviously opens up the possibility of all sorts of Web use of the
Reduce algebra engine.

vsl CSL and PSL and reasonably complete reasonably high performance
Lisp systems where their main focus has been the support of Reduce.
vsl is a “baby” Lisp that has just enough capability to support (most
of) Reduce. But its code is concise enough that a reasonable beginner
could potentially understand all of it – reading and working with its
code could thus provide both a stepping stone towards understand-
ing the fuller version and a sandbox in which new ideas about Lisp
implementation in a Reduce context could be explored at fairly low
cost. Part of the original motivation behind its development was to
start a re-design on CSL from the ground up based on all the experi-
ence gained from the current implementation, so there is some hope
that vsl experiments will lead to an eventual cslplus new Lisp that
can eventually replace CSL and that will be cleaner and more mod-
ern internally. As ever, volunteers willing to put real effort into work
towards the future would be very welcome!

As can be seen none of these are for trivial routine use by people who just
want to use Reduce to do some algebra for them, but they may be of real
value to system-builders with specialist needs.

Chapter 3

A guided tour of the Reduce
source code

3.1 The structure of Reduce source code

In this section we list most of the directories and files in the main directory
of Reduce source code, with a brief explanation. We will not document
every single file and every single sub-directory since even an advanced and
enthusiastic developer will never need to look at everything. When the
purpose of something seems sufficiently self-evident we will not comment
further, and note that some directories contain files with names such as
README that try to explain their purpose!

One of the issues that arose while drafting this chapter was how to
respond to files that seemed illogically arranged or out of date. There was
a substantial temptation to try to tidy things up. It can be hoped that
over the coming months and years rationalisation and rearrangement will
take place, but by and large what is written here will relate to the structure
of the Reduce sources in 2014 when the subversion revision number was
between 2500 and 3000. It seems very probable that the major directories
will remain unchanged and even if what is documented here is aimed at
something of a moving target it will perhaps be better than not having any
explanation at all.

When you build your own copy of Reduce that will create new files and
directories. Most obviously when you run the configure/make steps that
will create a directory cslbuild (or pslbuild accordingly) and within that

23

24 CHAPTER 3. THE REDUCE SOURCE CODE

there will be both a directory relating to the architecture of your current
computer and various other files needed by the build process. When you
run the configure script it is liable to create a config.log file that records
what it has done (albeit the log can seem cryptic on first inspection) and
it uses a directory called autom4te.cache to keep track of configuration
information that it discovers.

That leaves some major directories that are present when a fresh system
is first fetched from Sourceforge.

The directories

bin

The files in this directory are intended to provide an easy way to
launch Reduce. From the Reduce ”trunk” you can just issue a com-
mand such as bin/redpsl or bin/redcsl to use the PSL or CSL
version of Reduce (supposing that you have configured and built it!).

There are some features of the scripts used here that may not at first
seem obvious.

The first thing is that each script here can be invoked from anywhere -
the directory that is current when you trigger one of these scripts does
not matter. So, for instance, you can add the path to this directory
to your operating system’s paths to binary program files and then
use Reduce freely. This remark may seem obvious, but the important
aspect of it is that these scripts identify directories where various
Reduce resources are to be found, and contain curious-looking code
to do this. Thus you should not copy any of these scripts and place
them in a directory other than here since they rely on paths relative
to the place where they themselves live.

The second matter is that some people in some contexts have a single
shared file-space that they access from a variety of different models
of computer. The binaries that relate to different operating systems
and computer architectures have to be kept separate, and the main
configure and build scripts for Reduce achieve this by building bina-
ries in sub-directories with name such as pslbuild/i686-pc-windows
or cslbuild/x84_64-unknown-suse11.1. The scripts here automat-
ically detect the nature of the machine that they are being run on

3.1. THE STRUCTURE OF REDUCE SOURCE CODE 25

and on that basis link through and launch the relevant version of the
code.

The main programs that are provided include:

redcsl

Reduce using the CSL Lisp system. Note that just calling redcsl

will probably cause a window to pop up, but redcsl --nogui1

causes the code to run as a console application. A range of other
options are available, and a list of them with brief explanations
can be displayed by starting Reduce with the option --help.
Notably -L logfile.log will send a transcript of the output
from Reduce to the named file for later checking.

redpsl

Reduce using the PSL Lisp system. Again there are some
command-line options available – see the PSL-specific documen-
tation in the psl directory for explanation.

redpslw

On Microsoft Windows this may run the PSL Reduce in a win-
dow.

The following scripts may be of use of CSL developers but are not
intended to be of general use to people who are not suffering problems
or debugging new code:

bootstrapreduce

A slower CSL version that is used while building the full version,
and where the function lisp mapstore() may be used to collect
profiling information.

csl

The CSL Lisp system.

fontdemo

tests or demonstrates the Maths fonts used here. This and the
other “demo” programs provided with the CSL system have on

1The option -w can be used as a shorter alternative to --nogui

26 CHAPTER 3. THE REDUCE SOURCE CODE

occasions been useful when porting the full system to a new ma-
chine, in that they represent much smaller programs that illus-
trate or allow testing of individual aspects of the full system and
so can be built and checked first, before attempting to identify
and work around issues that might make the full system harder
to get going.

fwindemo

tests or demonstrates the user-interface aspect of CSL Reduce.

showmathdemo

tests or demonstrates maths display in the CSL version.

At present for the CSL versions there is one further complication. If
an exact match for your operating system can not be found in the set
of installed binaries then the first available ”soft match” will be tried,
with a message displayed to explain. There is no clever arrangement
to cause near matches to be tested for in a special order. The idea
behind this is so that eg if you had binaries for say Fedora 9 installed
and were actually running a different version of Fedora (say 10) then
the code will TRY the Fedora 9 binary.

A few more scripts in the bin folder are documented in the README
file in the folder itself.

buglist

This directory was used in earlier versions of Reduce to contain de-
scriptions of the known bugs and features in the then-current devel-
opment system. Some of the items listed there may have by now been
sorted out, while others may represent challenges in that sometimes
issues raised by a user may not have any solution that is at all obvi-
ous or that does not seriously impact performance. Inspect the files
there to get a feeling for the sort of problems that Reduce has had,
but expect current or new bugs to be reported and discussed on the
Sourceforge Reduce developers’ mailing list. It would be useful if at
some stage somebody took the time to review all the reports in this
directory and sort out which have been fixed and which remain as
deficiencies. At present the list is unmaintained.

contrib

3.1. THE STRUCTURE OF REDUCE SOURCE CODE 27

Code that has been provided by somebody but does not yet represent
stable code integrated into the main tree. See contrib/README. The
project will accept code and put it in here more easily than into
the main packages directory. Code present in this directory is not
automatically built as part of Reduce, and should be viewed mostly as
experimental or as starting points towards future supported packages.

csl and cslbuild

See Sections 2.3 and 3.4 for an explanation of the contents of these
directories. csl and its various sub-directories contain all source file
relating to the CSL Lisp, while cslbuild is where copies of Reduce

built in that version get created.

debianbuild, MacPorts and winbuild

Only a very few people will need to package up Reduce for distri-
bution, and the scripts for doing this may not always be in a stable
state.

The debianbuild directory contains everything necessary to build
Debian/Ubuntu packages for Reduce. To use it, you should have
already installed the package devscripts as well as a fairly full set of
TEX and development tools. You will need yet further things installed
if you wish to create .rpm as well as .deb package files.

Instructions for running the scripts should be present in the directory,
but since these are not intended for the casual user they should not
be viewed as guarantees of effortless success.

MacPorts contains a Portfile intended to make it easy for Macin-
tosh users to fetch and build the system using the well-established
macports tool. This file quotes the particular subversion revision of
Reduce that it was tested with and that will often be some way behind
the most recent checked-in version. Despite the fact that macports

attempts to keep building safe regardless of the exact details of OS X
that is in use it would be prudent to approach all building on Mac-
intoshes with a reasonably open mind after installing a significant
upgrade of either the operating system or of Xcode Tools.

Finally winbuild contains files and scripts for creating a Windows
installer (using InnoSetup) and all the cautions and caveats relating
to Linux and Macintosh packaging apply once again.

28 CHAPTER 3. THE REDUCE SOURCE CODE

doc

Reduce keeps the source versions of most of its documentation within
the doc directory. Almost everything is in LATEX. If you can not
find a ready build .pdf file documenting some aspect of Reduce

you are interested in it is worth checking in here to see what you
can find. Historically when Reduce was a commercial product the
source of the manual lived here but customers were sent a printed
and bound version and so in general did not need to look here. As
well as being usable to create a .pdf format manual the files here
are used to create the on-line documentation that is browsable at
http://reduce-algebra.sourceforge.net/manual/manual.html.

generic

Material that is in general not coded in Reduce but which may be
useful in certain contexts. For instance an Emacs customisation file
is there, also the code for redfront that provides a terminal inter-
face including local editing and colouring of prompts (in particular it
provides richer history and command completion facilities than the
line editing built into earlier eaw versions of Reduce, so may appeal
to console-mode users who are used to the bash keyboard shortcuts).

jlisp

The main versions of Reduce run on top of either the CSL or PSL
Lisp systems. Jlisp is yet another Lisp that can support Reduce,
and is entirely coded in Java. It is liable to be less well maintained
than either of the two main Lisps and very distinctly slower, however
anybody with a special need for Java compatibility or interfacing may
find it useful. The source code here can also count as a reasonably
clear and easy to read presentation of how a Lisp system might be
implemented. At present an Android version of Reduce might wish to
exploit this, and enough code for that is provided to show that it would
be feasible to provide either a full-featured or a calculator-style algebra
package on that platform. In general you will only want to try to use
this version of Reduce if you are willing to dive in and maintain all of
the Java code. That should not be hard for a reasonably experienced
programmer but is not for novices.

jslisp

http://reduce-algebra.sourceforge.net/manual/manual.html

3.1. THE STRUCTURE OF REDUCE SOURCE CODE 29

Jlisp has been converted from Java into Javascript to produce this.
The consequence is further performance worry, but in return for that
the ability to embed Reduce in a web context. This is not for ca-
sual use by ordinary users but for the benefit of system builders con-
structing large scale web-based applications that need to incorporate
Reduce. Even more than Jlisp from which it is derived this is for use
by serious programmers who have specialist needs.

libedit

The GNU readline code that provides convenient local editing, com-
mand completion and a history mechanism is maintained by its owners
under as fully strict a GNU license as they can as part of a deliberate
policy to try to encourage people to license their own (much larger)
programs under the GPL. The Reduce project has chosen to use a
BSD license and explicitly not the GPL, and hence is unable to use
readline. Fortunately there is a BSD-licensed work-alike, libedit. To
ensure that the source of that is available whenever any relevant part
of Reduce is used a copy of said source is included in the Reduce

distribution tree.

packages

Apart from the file package.map that lists all the packages that com-
prise Reduce, this contains directories that are in general one per
loadable package. There are a few cases (eg misc) where one direc-
tory is used to store a number of smaller packages, and the directory
redlog is itself subdivided into further folders that contain the con-
stituent parts of that one particularly large Reduce sub-project.

psl and pslbuild

There are to the PSL Lisp system what csl and cslbuild are to
CSL.

scripts

The various scripts used to build and test Reduce are collected in
this directory. The ones that are perhaps most liable to be useful are
testall.sh (which can run tests on all known Reduce packages) and
test1.sh which tests just one package. People embarking on develop-
ment using CSL may find csl-sanity-check.sh and (on Windows)

30 CHAPTER 3. THE REDUCE SOURCE CODE

cygwin-sanity-check.sh useful helpers while making certain they
have enough development tools installed. When checking that direc-
tory as part of the process of writing this documentation it became
clear that a number of the scripts there relate to old ways of doing
things, while others are used as part of the configuration process. Of
the scripts used when Reduce is configured the main one that may
need periodic review is findos.sh which is intended to generate a
string identifying the operating system that is in use. If you install
the Reduce sources on a new platform you may need to insert a few
lines into your copy of that file so that your port can have a good
name.

vsl

The vsl directory contains yet another Lisp that is capable of (just)
supporting Reduce. vsl is hardly a serious Lisp, in that its entire
source code is only just over 3000 lines of rather plain C code. Being
small it may fail to support quite all of Reduce and it will certainly
be slow, but it provides a lead-in for anybody who would like to find
out a bit about Lisp implementation, and could possibly form a really
compact body of C that could be used to support Reduce as a compo-
nent of some other program or running on some otherwise awkward
computer. The best characterisation of this is that it could appeal
to those how have a good old-fashioned hacker mentality and can ap-
preciate being provided with a sketchy and possibly ill-documented
framework that they can cannibalise to form part of whatever their
own project is. See also csl/embedded and csl/new-embedded for
other toolkits that an experiences programmer could use as part of
the process of including all of Reduce’s capabilities within their own
product, and note over and over again that these are not supported
with any careful hand-holding or explanation: they are for people who
can pick them up and make use of them with at best a few hints!

xmpl

This is a snapshot of all the test scripts for Reduce and the correspond-
ing reference logs. The definitive versions of these are held within the
packages directory, but users who do not need the full set of Reduce
source files may find the copies here useful.

3.1. THE STRUCTURE OF REDUCE SOURCE CODE 31

Every so often there will be a maintenance task refreshing this set from
the master versions. In case of uncertainty please fetch the packages
directory from subversion and inspect the version there.

This directory exists to make it easier to support the creation of
binary-only distributions of Reduce. By its nature a binary dis-
tribution would not contain the packages directory (because that
mostly contains source code): but xmpl can be shipped instead. For
some people it may also be convenient to have a complete set of
test/example files collected neatly in one place since those tests can
act as supplementary documentation of Reduce’s capabilities and an
illustration of how package originators expected their code to be used.

The files

In the main directory there are various files which are needed for the con-
figuration and compilation of Reduce: configure, etc.

Some of the other files and directories are historical hang-overs and
some contain notes about possible future work. Others may be being used
by developers to communicate with one another. Besides these files, a few
other files of key importance are listed below.

ACN-projects.doc

Almost any truly interesting software project will never be complete,
and Reduce offers many opportunities for new blood to join in and
contribute. The document you are reading now is intended to provide
some sort of a route-map to get you started. As well as having your
own ideas about what developments based on Reduce or extensions
to the system it would be good to work on it may help to have a list
of some of the ideas that others have either considered or started but
not yet finished. The file ACN-projects.doc lists some starting points
that one of the developers is interested in and where volunteers to help
would in general be welcome. One might imagine other collections
of project ideas from others being collected, and if enough arrived
they would be consolidated into a reduce-projects directory. As
well as a source of tasks that people wishing to contribute to Reduce

might work on a list like this also serves as a basis where users who
are themselves unable to contribute to the code can get some sense

32 CHAPTER 3. THE REDUCE SOURCE CODE

of what might be possible, and on that basis it could be useful to
provide encouragement to the active developers so that they know
what sorts of extensions to Reduce would be most appreciated by the
community.

Contributor-Release.txt

At the time that Reduce was a commercial product contributors who
provided code submitted a Release form to Tony Hearn confirming
that they were willing for him to use and distribute their code. The
wording that was used in this process is preserved as part of the trail
that backs up the use of the BSD License terms for the Reduce sources.

BUILDING

The contents of this file are the subject of Chapter 2. The current
document is intended to update and replace this file, which may well
be out of date.

README

This file contains licensing information about Reduce and about the
various components which are used to build Reduce (gnuplot, FOX
graphical libraries, wxWidgets graphical libraries, . . .). Both as a
matter of politeness and as part of a discipline in ensuring that li-
cense terms of all software involved are adhered to it is strongly de-
sirable that this be updated whenever any new third-party software
is brought into the Reduce tree.

3.2 An overview of how Reduce gets built

Building Reduce starts with having a Lisp system. The dialect of Lisp used
is known as Standard Lisp and is not at all the same as Common Lisp as
used elsewhere. You are generally expected to start with either the CSL or
PSL implementation of Lisp. In the case of CSL that is itself built from
sources held within the Reduce file-set with much of the code written in C
or C++. For PSL the main sources of the Lisp are coded in Lisp and are
again held within the Reduce tree, but building Reduce normally starts by
using a ready-compiled binary version of PSL.

3.3. THE PSL LISP SYSTEM 33

A carefully written script starts with a Lisp-coded version of a parser
for the rlisp syntax, and uses that to read various key source files from
the packages directory. Some of these have had to be written in a stilted
subset of rlisp because they are read in at a stage where the full language
is not available. The order in which files are compiled can matter because
later ones can rely on capabilities provided by earlier ones. The identities of
these most central files can be seen in packages/package.map where they
are marked with the tag core, and the order in which they are processed
is the order in which they are listed there. Although there are differences
between the details of how CSL and PSL treat these in both cases a “boot-
strap” version of Reduce is created incorporating just these core packages.
This bootstrap version can then be used to compile all the other packages.
Ideally the order in which other non-core packages were compiled would be
unimportant, but in reality there are dependencies between some of them
and the order in which they are listed in the package.map file should be
adhered to.

Once all packages have been built it is possible to create a snapshot
of the state of Reduce’s memory in such a way that it defines the state
Reduce finds itself in when it is subsequently started. Packages can have
three different states relative to this heap image file. Some of the most
central ones will be loaded into memory and are fully and immediately
ready for use. For instance the parser and very basic algebra come in this
category. Others will have the keywords that call for their use set up to be
triggers that cause the package to be loaded into Reduce when first used.
The integration and factorization code are handled in this way, and the file
packages/support/entry.red contains the catalogue of auto-load triggers.
Further packages exist and are available to all Reduce users, but need to
be activated using a statement of the form load_package groebner; (to
load the groebner-base package) before use.

3.3 The PSL Lisp system

PSL (Portable Standard Lisp) was originally built specifically for the sup-
port of Reduce. At a later stage it was under the care of Hewlett Packard,
but it is now available under the BSD Licence as so may be freely copied
or built on.

The key idea it followed was that essentially all of the Lisp system should

34 CHAPTER 3. THE REDUCE SOURCE CODE

be coded in Lisp. To make that feasible it defined a set of definitions known
as Syslisp that support operations on machine words and pointers, and the
PSL kernel is written in this. A bootstrapping process compiles this code to
create a usable but minimal PSL kernel that can be used to build the rest of
the system. It is normally necessary to have some sort of working PSL im-
plementation available in order to perform the bootstrap process. PSL has
compilers that can generate native code for a wide range of processors, but
sometimes variations there are required not only to account for hardware
but also for the operating system being used. While all relevant source file
for all of PSL are available as part of the Reduce distribution the normal
way of building Reduce starts by having pre-made PSL binary files to use.
These are provided for a range of targets (mainly using Intel processors)
but machines by SGI and Sun (at least) are also reasonably easy to find.

There is documentation of the PSL in the psl/doc directory of a full
Reduce file-set, and so perhaps little more is required here.

3.4 The CSL interpreter

CSL (Codemist Standard Lisp) is an alternative Lisp. Its development
started in the late 1980s when it was built with a kernel coded in C to
replace Cambridge Lisp that had been built using BCPL. The key files
relating to it are present in the csl/cslbase subdirectory of a Reduce

tree. Normally CSL is built entirely from source as part of the process of
configuring and compiling Reduce. This increases the chances of it building
on a new or unusual architecture, and on today’s faster machines it still
only takes a few minutes for everything to build.

CSL uses the FOX toolkit to support a windowed interface under Mi-
crosoft Windows or X11. There has been some work towards a transition
to the use of wxWidgets which would also support OS X, but that is not
at all complete. There is a directory csl/support-packages that contains
original versions of the third-party software that a CSL build relies on, to-
gether with commentary explaining how their license terms interacts with
that used by CSL itself.

The full process of building Reduce using CSL happens in a number of
stages:

1. The configure scripts probe the current machine environment and
so set up file-paths and options that will allow CSL to build.

3.4. THE CSL INTERPRETER 35

2. The CSL kernel is compiled. This is just a few dozen C files for CSL
itself, but the first time CSL is built on any particular platform it will
also involve the compilation of all the C++ files making up the FOX
library.

3. In normal use the CSL executable needs a ready-built heap image to
load. This image will contain saved definitions of extra Lisp-coded
functions. To create such an image the system is launched with a
“-z” flag that instructs it to perform a cold start. It then needs to
read in a file containing various important bits of Lisp that upgrade it
from being a Lisp kernel into a fully usable system. One of these parts
is a Lisp compiler that compiles raw Lisp into a compact bytecoded
format that the kernel can execute rapidly. When building just a
Lisp an image file csl.img containing this is dumped. When building
Reduce a version of the whole system that represented compiled code
in bytestream format is created. This is called bootstrapreduce.img,
and if forms a complete version of Reduce but one that is slower that
the final version (by perhaps a factor of two).

4. bootstrapreduce is used to compile the top 3000 (roughly) functions
that make up Reduce from Lisp into C code. The generated C is put in
cslbuild/generated-c in files u01.c to u60.c. A file profile.dat

created by running a measuring script tracks which functions are liable
to be the ones most important for overall Reduce performance. A
main Reduce executable is created by adding compiled versions of
u01.c etc to the files that made up the basic Lisp kernel.

5. A new image file reduce.img is created leaving the most important
functions to be implemented as C code in the kernel but putting all
the less important ones as bytecode streams in the image file. This is
the final version of the system that normal users will interact with.

Since the inner parts of CSL are all coded in C one might hope that it
would be easy to adapt it to interface with almost any other C code. One
variation on that is when a user needs to embed Reduce as a component in
some larger product. For those purposes the GUI code in Reduce is liable to
be irrelevant and anything that makes the build process more complicated
is going to be unwelcome. Anybody with that sort of need is directed
to the csl/embedded and csl/new-embedded directories that provide a

36 CHAPTER 3. THE REDUCE SOURCE CODE

framework for a cut-down simplified system without a serious user interface
but potentially much more convenient for use as a component.

A key idea that CSL uses to try to achieve respectable performance is
to compile sections of Reduce into C, and to pick the most important bits
to treat this way. This is achieved by profiling the system. When you
run bootstrapreduce you can use the statement lisp mapstore t; to
display information showing which Reduce functions had been most heavily
used. Well actually the mechanism used sorts functions based on how many
bytecode operations where obeyed within them but scaled to give higher
priority to short functions. For instance after running the test script from
packages/alg/alg.tst the output it generates starts off with

2: lisp mapstore t;

Value %bytes (So far) MBytecodes Function name

4.11 1.05 (1.05) 0: simpcar

3.56 1.43 (2.48) 0: noncomp

3.45 1.01 (3.49) 0: reval

3.21 1.29 (4.78) 0: exchk

2.87 0.84 (5.62) 0: argsofopr

2.63 1.15 (6.77) 0: terminalp

2.63 2.11 (8.88) 1: smember

2.29 1.25 (10.13) 0: getrtypeor

2.18 0.64 (10.77) 0: delcp

...

This indicates that the function simpcar was liable to be the most impor-
tant function to select for compilation into C. Of all the byte-code operations
performed running the test 1.05% of them were in simpcar and because it
is a short function it got allocated a merit score of 4.11. The function
noncomp came second with a lower merit score even though it used more
(1.43%) byte-codes. Looking further down smember used even more byte-
codes, executing just over a million of them. The top 8 functions between
them account for fully 10% of all the byte-codes executed, and looking fur-
ther down it is possible to see that the top 65 functions use 50% of all
byte-codes. This style of profile information can sometimes be useful when
trying to understand the performance of your own code, but of course as
with most similar schemes it can take time to make sense of it and just

3.5. ALGEBRAIC AND SYMBOLIC MODE 37

knowing that simpcar (say) is heavily used might not of itself suggest ways
to change that fact.

Every so often the full set of Reduce test scripts are subject to this
profiling to create a file profile.dat that guides the process of compiling
things into C. You can create a fresh version of this file by selecting the
directory where Reduce has been built as current and going make profile.
It should not be necessary to do this at all often, but following significant
modification of the central parts of Reduce or after adding a substantial
new package that is liable to be such that its speed is critical it can be
useful.

3.5 Algebraic and Symbolic mode

In normal circumstances when Reduce is started it presents the user with a
world where the main data type is one that represents algebraic formulae.
It is possible to write programs at this level, for instance

procedure legendre(x, n);
begin

scalar r;
r := (xˆ2-1)ˆn;
for i := 1:n do

r := df(r, x)/(2*i);
return r;

end;

for i := 1:5 do
write legendre(v, i);

Given a formula it is possible to extract components from it, as in

w := (x-17)ˆ3;
length w; % 4
part(w, 0); % plus
part(w, 1); % xˆ3
part(w, 2); % -51*xˆ2
part(w, 2, 0); % minus
part(w, 2, 1); % 51*xˆ2
part(w, 2, 1, 0); % times

38 CHAPTER 3. THE REDUCE SOURCE CODE

Using Reduce in this mode is referred to as “algebraic mode” usage. It
provides an easy transition from mere interactive or simple scripted use of
the system and if the operations used are mostly calls to expensive opera-
tions from existing Reduce packages it can be fully as efficient as anybody
could ever need. But some tasks will require direct access to the Reduce

data structures in order to be viably efficient or to have flexible enough
control to achieve what they need to. For this one descends to “symbolic
mode”. This can be achieved either by prefixing an individual Reduce state-
ment with the word “symbolic”2, or by using the directive “symbolic;”,
which sets the system into low-level mode until a matching “algebraic;”
command is issued.

While the syntax used to write code is almost exactly the same in sym-
bolic mode its meaning is different. The values stored in variables and
manipulated are now items of Lisp data. This means they can be symbols,
strings, numbers or lists. The functions that operate on them are no longer
the algebraic operations that Reduce as an algebra system perform but the
low level functions provided by Lisp, augmented by all the symbolic mode
functions that form the implementation of Reduce itself. An immediate
consequence is that in symbolic mode the “+” operator can only add num-
bers together, and a name is expected to be the name of a variable unless it
is prefixed with a quote mark (in which case it will be treated as data in the
form of a Lisp symbol). The set of Lisp functions available are documented
in the Standard Lisp Report[9], but note that the Reduce developers have
made small changes and extensions to that since 1979 when it was written.

More of this document is concerned with coding at the symbolic level,
and arranging that what you implement there becomes available to ordinary
users who do not need to delve that deep.

3.6 Central parts of Symbolic Mode

Reduce

Reduce as a whole is “just” a reasonably large rlisp program. In total
there are roughly 400,000 lines of code amounting to 13 megabytes of text.

The size of the code means that when you start working with it it can
seem hard to know where to find things. Because Reduce has grown organ-

2the word lisp can be used as an alternative

3.6. CENTRAL PARTS OF SYMBOLIC MODE REDUCE 39

ically over a period of fifty years the arrangements are not fully uniform,
but there are nevertheless workable policies about where particular bits of
code will live.

The source code for Reduce itself lives in a directory called packages,
and that contains a file package.map that lists the modules that exist, and
then for each sub-part of Reduce a directory that contains the source and
test files for that component. Some of these modules may be referred to as
“core”. What this means is that during the process of building Reduce the
“core” packages are built first to create a subset of the full system that is
sufficient for use while building the rest. While building the core there are
issues that mean that the order of reading in packages can be quite fragile,
and the list in package.map specifies the sequence that is used. Ideally the
remaining packages could be built in any order, but for a variety of reasons
this is not quite the case at present.

The hope is that the names of the directories that contain packages
will generally indicate what is contained there, and certainly for the higher
level and more specialised modules it will be clear how to find material.
However the code to implement advanced functionality will tend to call a
lot of functions that perform lower level operations, and it may not always
be instantly apparent where to find that for review. One way of dealing
with this is to just search, as in using the Unix-style commands

cd packages
grep "procedure somefunction" */*.red

to find a definition of somefunction.
As has just been explained, the Reduce source code is partitioned so

that the parts that implement some particular module or algebraic trans-
formation live together. For instance poly contains the code that manages
the representation of polynomials and that provides basic operations such
as addition and multiplication, while specfn is where Bessel and other spe-
cial functions are implemented. However the nature of algebra is that once
there are fundamental domains such as polynomials and rational functions
in place there will be many higher level operations that work on the same
sort of data. Thus unavoidably there are bodies of code that perform poly-
nomial operations in many places beyond the poly directory. For instance
factor and groebner, with ncpoly adding support for polynomials with
non-commuting variables and many other packages using polynomials as

40 CHAPTER 3. THE REDUCE SOURCE CODE

their key data. Similarly rational functions and general prefix forms may
have their most fundamental support in alg, but they are used everywhere
and so functions that act on them are present within almost every module.
The package rlisp contains the bulk of the Reduce parser and so is where
to look to understand in detail how syntax is dealt with, but it provides
hooks so that other packages can add their own special infix operators or
other notations.

This all really means that while it is generally easy to find the code that
implements a high level operation (it is liable to be in a directory named
after the module providing that operation: that may be a little cryptic (eg
susy2 deals with supersymmetry, scope is a Source-Code OPtimization
packageE. . .) but will usually not involve too much searching. Similarly
the lowest level of fundamental support is well localised (eg in rlisp, arith,
poly and alg). But for intermediate levels textual searching probably is
the best basis for navigation.

3.7 On the legacy feature of upper case

coding

Reduce started life around 50 years ago! At that stage everything was
UPPER CASE. Some while later computers started to provide lower case in-
put options, and some people liked to write code in lower case. To survive
with that Standard Lisp and Reduce introduced a flag called *raise that
(when set) caused all input to be folded to upper case. That was set by
default and about the only time *raise got changed was that when Re-
duce was parsing a string it made temporary adjustments so that strings
preserved case.

Hypothetically users could switch *raise off and write their own code
in a case sensitive style but almost nobody did. It was more the case that
different contributors adhered to different capitalisation conventions and so
overall throughout the source there is not total consistency. A decade or so
later having all internal names in UPPER CASE started to feel archaic and
the Lisps were altered so that the internal functions became car and cdr

not CAR and CDR (etc).

CSL and PSL supported this in different ways. PSL kept the one flag
*raise and when set in modern versions that folds input to lower case.

3.7. ON THE LEGACY FEATURE OF UPPER CASE CODING 41

CSL introduces a new flag *lower so that if *raise is set that input up
folded up, if *lower is set it is folded down and if both are set then who
knows. . . that situation was not thought about. Neither of these schemes
are in the Standard Lisp Report (which was not updated) so at some level
relying on either is “delicate”. Anyway in both cases the internal names of
almost all items within Reduce are stored to be in lower case. If anybody
needs to use a symbol whose name has both cases in they can escape it
as in !Camel!Case!Word. The exclamation marks here are of course a bit
ugly, so some may feel that they wish to disable Reduce’s case folding so
that words remain just as they appear in the source whether they are in
upper, lower or mixed case. The notes here explain on why that option has
not been taken throughout.

Reduce has collected contributed modules from a range of authors,
and they adhered to a range of different conventions. If you look in the
code right now you will see in e.g. matrix/matpri2.red (and a bunch of
other places) code that goes SYMBOLIC PROCEDURE ... in upper case. In
misc/lie1234.red it says HE:=SYMBOLIC READ() and the function READ()

must mean the internal Lisp function read(). There are other modules
where people have chosen to use mixed case names for their own functions
and variables but where I know that they have not been quite consistent.
So if Reduce was abruptly case sensitive by default there would actually
be a significant amount of review needed with changes in many many files.
It is also not clear that this would be trivial to do using a simple script in
that the treatment of words in comments as distinct from code would need
sensitivity, and where possible it would be desirable to clear changes with
original package authors to preserve the best prospect of them being willing
to continue with some support.

Probably there should be a long term objective of making Reduce case
sensitive. Fairly recently the CSL and PSL sides have been in discussion
about having one variable to control case not two and making the two Lisps
behave the same in that area. If we started again that might remove both
*raise and *lower and introduce a new flag *input_case_control (say).
However for compatibility reasons in a load of places that would hurt. So the
current discussion (nothing has yet been agreed or done) has as one prospect
that *lower goes away (or at least becomes deprecated) and that *raise is
then expected to hold not nil/t but one of lower/nil/raise as its value.
If then setting *raise to t meant “fold case to whenever the underlying Lisp
uses natively” that would be pretty upwards compatible with PSL usage.

42 CHAPTER 3. THE REDUCE SOURCE CODE

Note that we do not support Common Lisp but it seems it tends to be
UPPER CASE internally. Thus !*lower is under some threat and while the
Reduce build process tries to set flags that inhibit inspection of .redurerc,
setting *raise or *lower there is something potentially dangerous.

As an example, one might like the name FandG but in Reduce that must
be input as !Fand!G, or conversely it can be accepted that it really means
just fandg internally. A mixed case world might be more “modern” but it
seems that while individual users can turn off *raise and still be CSL/PSL
compatible those who turn off *lower are limiting themselves to CSL. And
people who might contribute code to the community are way safest using
!Fand!G (note that the exclamation mark is not part of the name – it is
just a notation saying not to mess with the next character). So the name
as a STRING is then just "FandG". As an alternative much code in Reduce

would use a name like f_and_g instead.

If a user put something that resets !*lower into the .reducerc file that
is OK but really risks confusion when the user sends code to another user for
testing and they do not have that option globally set. Furthermore reliance
on *lower may tend to lock the code out from use with PSL. . . ensuring
compatibility there takes a little more care.

Thus in my opinion is safer to accept that for historical reasons Reduce
should be viewed as a single-case platform at present. The definition might
be left as procedure FandG x; . . . with an upper case letter written, but
it should then be avoided having functions with names like FandG, fandg,
fANDg, FaNdG etc. since it should be expected that all ends up as fandg

internally.

All that said the user could put off lower; off raise; at the start
of each of their source code files if desired. The off raise; is because
that is what PSL needs to defeat its default behaviour of folding things to
lower case, while the off lower; is for CSL’s benefit. This whole area is
just one of the many where a keen volunteer willing to put time into not
just improving the code but also in contacting and coordinating with the
authors of packages they change (for instance to ensure that those authors
will still feel able to maintain their own packages) would be a real help to
the overall project.

3.8. DATA STRUCTURE IN REDUCE 43

3.8 Data structure in Reduce

Here we will describe the main data-structures used by Reduce since those
are important for all code, new and old.

Firstly when Reduce or rlisp code is read in either from the terminal
or from a file it is parsed into a tree representation that is in effect just
Lisp code. By using the Reduce directive “on defn;” it is possible to
get this form displayed. You then need to go “off defn;” to return to
a mode where what you type is actually obeyed. For the normal person
using Reduce as an algebra system the Reduce parser adjusts input in this
generated Lisp so it contains explicit calls to the Reduce functions that
simplify expressions. After the directive “symbolic;” the code is left as Lisp
that does just what the input code indicates and this is the mode in which
most new Reduce bodies of code will be written. The code-base contains
two options that are worth mentioning here if only to avoid confusion.
rlisp88 is an alternative extended version of the rlisp syntax that was,
as its name might suggest, being worked on in around 1988. Despite the
potential benefit of the language extensions the bulk of Reduce code is
written in the earlier dialect (known as just plain rlisp) and it is probable
that anybody who wanted to experiment with rlisp88 would need to review
and possibly update the code that implements it (which is stored in an
obvious location in the packages directory). In a rather similar manner
Reduce 4 represents research into what could be described as a more object
oriented implementation of the inner algebraic structures of Reduce, built
in a way that could lead to better code clarity and long-term reliability.
Its foundations lie in order sorted-logic and the code involved remains in
packages/reduce4 but it exists at present as a starting point for a new
project to bring Reduce internals up to date rather than as a finished viable
part of the current working system.

Much of the time Reduce will be storing and working with algebraic
formulae. There are two separate representations for these. The first is
called “prefix form” and is mainly used for input and output, and is hardly
ever used for serious computation. This structure is a fairly direct mapping
of formulae onto trees that are built out of rlisp lists. For each algebraic
operator there will be a symbol used to stand for it. The symbols are
generally neatly spelt words, so plus is used instead of +. Each part of a
prefix form is a list whose first element is its operator and the remaining
ones are arguments. Thus

44 CHAPTER 3. THE REDUCE SOURCE CODE

(difference (plus (expt (sin x) 2) (expt (cos x) 2)) 1)

The rlisp parser can read in a sequence of characters like
sin(x)^2 + cos(x)^2 - 1 and build this structure, and other parts of
Reduce can convert the prefix notation back into something suitable to dis-
play to the user. To find out what format is involved, and specifically to
see what name is used within Reduce to indicate some particular operator,
either of the following recipes may assist:

% Observe the input...
on defn;
int(1/sin x, x);
off defn;
% Observe output...
share xxx; % xxx is "shared" between algebraic and Lisp
xxx := int(1/sin x, x);
lisp prepsq simp xxx;

There will be further commentary about the functions simp and prepsq

later on here.

The bulk of Reduce uses a different representation for formulae. This
notation starts as one for representing polynomials and fractions so that
they are normalised or standardised. Variable are kept ordered and the
highest degree terms in a polynomial come first. This canonical representa-
tion makes many internal algebraic operations fast and reliable. Following
on from the previous illustration one can observe example of this internal
representation using an interaction of the following style:

share xxx;
xxx := (a-b+12345667)ˆ3;
lisp simp xxx;

Many users of Reduce will not investigate at a low lever that sees details
of internal representations, but when debugging new code (even in algebraic
mode) it can sometimes be useful to understand it since trace and debug
output may display raw data structures.

3.8. DATA STRUCTURE IN REDUCE 45

The first representation I will explain is known as a “standard form”
(SF) and it is used to represent polynomials. There are very many func-
tions built in to Reduce to perform operations on these polynomials, and
often their names end in f, as in addf and multf. These are defined in
packages/poly/polrep.red with backup from other files in the poly di-
rectory.

A SF can be nil (representing the value zero here), an integer or a
prefix form identifiable because its car (ie first item) is a symbol. This last
case is used to cope with polynomials whose coefficients are things more
elaborate than just integers – for instance complex numbers or extended
precision floating point values: for much of the time you can ignore that
case. A function domainp is the official way to detect this case.

When a SF is not a domain element it represents the sum of two parts -
a “leading term” and a “reductum”. Internally this is just a simple rlisp

or Lisp level pair, so creating and accessing the parts is cheap and simple.
Reduce provides notation to build and access things so that rather than
using an infix . and functions car and cdr you use infix .+ and functions
lt (leading term) and red (reductum).

A leading term is a power paired with a coefficient, where the power is
a variable paired with an exponent and the coefficient is just another SF.
Polynomials in several variables are handled by having a polynomial in one
selected “main” variable whose coefficients are polynomials in the subsidiary
variables. All terms that have the same main variable are sorted so that
the highest degree one comes first. It is important that every polynomial
keeps variables arranged in consistent towers, and the function ordp is
used to specify a normal ordering. For cases where the default ordering
is unsatisfactory there are functions like reorder and setkorder but when
those are used it is vital that everything is set back to a default state
afterwards. See polrep/reord.red for the implementation.

An example of creating a simple polynomial (3*x^3-4) from scratch
could be

(mksp(’x, 3) .* 3) .+ (-4);

and functions with names such as mvar, ldeg, lpow, lc, tvar, tdeg are
provided for those who need to navigate and (for instance) find the degree
stored within a term. In data structure terms the above expression would
display as

46 CHAPTER 3. THE REDUCE SOURCE CODE

(((x . 3) . 3) . -4).

Formulae such as sin(x) that are not polynomials are dealt with by using
the prefix representation of the formula as a variable in a SF, so sin(x) as
a polynomial will be

((((sin x) . 1) . 1) . nil)

I believe that the best way to learn about standard forms and to
discover the key functions relevant to their use is to read the code in
packages/poly/polrep.red where the code that performs such operations
as addition and multiplication is kept. You will find there indications of
extra concern so that Reduce can cope with non-commuting variables, see
that sometimes pattern-patching rules may be applied during basic arith-
metic, and spot how some flags alter behaviour – eg a flag called !*exp (set
using “on exp;” and cleared using “off exp;”) disables a large proportion
of the normal simplification of expressions.

Standard Quotients (SQ) represent the quotient of two SFs, reduced to
lowest terms. They are created using a constructor ./ and their components
are extracted using numr and denr. SQs are the main widespread way of
storing big formulae, and if an expression is in fact a polynomial it will just
be stored as a SQ whose second component is 1. Just as there are many
functions that handle SFs there are functions with names such as addsq

and multsq that combine SQs.
The top level of Reduce works by reading in an expression in prefix form,

converting it to a SQ (and in doing so it simplifies and standardises it) and if
the result is to be displayed the SQ is converted back to prefix form as part
of the printing process. Key functions that perform these transformation
include simp which takes a prefix from and returns a SQ, and prepsq which
takes a SQ and returns a prefix form. A much more detailed description
of the evaluation, simplification and conversion functions can be found in
Section 4.5.

This repeated conversion backwards and forwards could become waste-
ful, so in certain circumstances Reduce uses mk!*sq to convert a SQ into
a prefix form that has the special operator !*sq and then the undisturbed
SQ as the next item in its list. This allows SQs to end up embedded within

3.9. HIGHER LEVEL REDUCE PACKAGES 47

prefix forms just as the scheme shown above to cope with sin and cos allows
prefix forms to appear within SQs.

If a programmer makes a mistake and passes a prefix form or an SF
to a function that expects an SQ (or any other similarly mistaken action)
Reduce will not provide a nice informative compile-time complaint. It will
almost certainly crash when the incorrect code is executed, and this crash
may be messy. This lack of safety in the code is one of the consequences
of Reduce’s age. There is at least some experimental code in the assert

package that can help detect any such problems, but if you write code at the
symbolic level you mostly just need to be careful. With a little experience
you may become use to the styles of crash report that various styles of
mistake tend to lead to.

3.9 Higher level Reduce packages

The majority of the packages in the directory packages is made up by user
contributed packages. They can be of general purpose or more specialistic.
To find their symbolic mode entrypoints (or names of procedures) scan
their code for places that establish symbolic operators or set up simpfn

or opfn properties on symbols (see Section 4.1 for explanations on these
properties).

It goes beyond the scope of this document to give even a superficial
description of the code in the “contributed” packages. On the other hand,
the authors welcome the submission of extensions to this document aimed at
describing features of Reduce’s packages that might be of general interest.

Prospective authors of new packages might wish to contact the main-
tainers of code on which their packages are based for possible advice or even
cooperation.

3.10 Finding out specific features in the

Reduce sources

In this section we will try to answer to the question: “Where, in the
Reduce sources, is XXXX implemented?”, elaborating beyond the com-
mentary given earlier.

48 CHAPTER 3. THE REDUCE SOURCE CODE

Well of course (eg) the bulk of the indefinite integration code is in
packages/int/*.red and the factorizer in packages/factor/*.red etc.
Most of the parser for the Reduce language in is packages/rlisp/*.red

and the core of the bits that drive the simplifier are in packages/alg/*.red,
but lots of the way that Reduce is built is such that the core bit provide
mechanisms that let other packages or modules extend things, so loads of
stuff is somewhat scattered!

So here is one strategy to find stuff.
Given a procedure or operator or keyword, eg “hah”, go

lisp prop ’hah; % in PSL and CSL

or

lisp plist ’hah; % in CSL

and that gives the “property list” of the symbol whose name is “hah”. You
may spot ’simpfn or similar properties. . . if so they give you the name of
the function that implements the thing. Eg plist ’int; has an entry
(simpfn . simpint) in it so simpint is an entrypoint, or the name of a
procedure. Later on there will be further discussion of some of the properties
that may be observed within Reduce.

Now you may use a program for searching string in a directory
tree of text files, like grep in GNU/Linux environments, to search for
procedure simpint. Files in packages/*/*.red have a good chance of
being the place where that is defined.

The above is not that wonderful, but is a start!

3.11 Finding the documentation of Reduce

There is a lot of documentation scattered in Reduce sources. The purpose
of this chapter is to put together a list of all potentially interesting texts
inside and about Reduce. We will describe the available documentation
within the different topics to which it pertains. It may be useful to note
from the start that these days Reduce is supported by volunteers rather
than being commercial product, and there are liable to be places where
existing documentation is incomplete or out of date. Obviously from time

3.11. FINDING THE DOCUMENTATION OF REDUCE 49

to time effort will go into improvements on that front! One general policy
is that existing documents will be retained (if only for historical interest)
even when or if they have become somewhat out of date.

Building and installing. The main file to start with is the file BUILDING
in the main directory. It describes the building of Reduce from the source
on the main platforms that are expected to be important.

The directory debianbuild contains a README file about building
Debian packages for Reduce. Such packages may be transformed into RPM
packages by the program alien, and similarly winbuild relates to creating
a packaged binary release for Windows. In general only those concerned
with making neat binary releases for others will need to concern themselves
with these, but the curious may nevertheless find interest there with docu-
mentation embedded in scripts as well as in the form of separate files.

CSL. The CSL reference manual is the file csl/cslbase/csl.pdf. Even
if this document is in a draft state it is a unique source of information
about CSL’s internals. In the same subdirectory also lies a series of text
files that are provisional reports on the development of CSL. For example,
the file gui-non-gui.txt describes how to start Reduce in windowed or
terminal mode and contains a discussion and explanation of some of the
design decisions that led to what initially looks like a very complicated
mess of different versions.

Documentation for the FOX toolkit used to support the CSL GUI can
be found in csl/fox/doc. It is also accessible from the file index.html in
the directory csl/fox. See also the README file in the same directory.
The definitive source of information about FOX is the library’s own web-site
http://www.fox-toolkit.org.

The folder csl/reduce.doc contains an HTML version of the Reduce

3.8 manual to be used with the graphical interface. In general the master
copy of the manual (see later) should be consulted in preference to this.

The folder csl/support.packages contains several libraries and utility
programs, like: TEX fonts, the gnuplot program for scientific drawing, the
distorm disassembler, etc. These are provided so as to give full credit to the
authors of software components written by others but used within Reduce,
and a sequence of README files there should comment on the exact origin
and license terms of each of the components that are present.

50 CHAPTER 3. THE REDUCE SOURCE CODE

PSL. In the directory psl there are several documents of interest. The
most important is probably pslman.pdf, the reference guide of PSL. Other
manuals, notably pc-install.pdf, pc-oper.pdf and unix-install.pdf,
unix-oper.pdf, contain instructions on how to install PSL Reduce un-
der Windows and Unix systems. Some of the installation guides relate to
installing PSL from the media that was distributed prior to the move to
Sourceforge, and need to be interpreted in that light.

User manual of Reduce and its packages. Perhaps the first thing to
note is that the main Reduce manual lives in the directory doc/manual in
the Reduce source tree, but that what is there is initially just the LATEX
source for it. You need to go make to run the scripts that convert it to a .pdf
file that you can view easily. This scheme means that the documentation
can be updated incrementally in just the same way that the source code can,
but it does mean that users need more software tools installed (i.e., LATEX)
to use it! The main manual encapsulates the original Reduce 3.8 user guide
by A. Hearn and the manuals of nearly all the contributed packages.

Standard Lisp report. This document, written by J. Marti, A.C. Hearn,
M.L. Griss, C. Griss, laid down the definitions of Standard Lisp, which was
meant as a standard basis for the development of Reduce. It is of primary
importance for those who would like to understand the symbolic mode of
Reduce.

Symbolic mode primer. This document was written by H. Melenk [5]
and is contained in the directory doc/misc. As we said in the Preface, the
document provides overlapping information about Reduce’s internals with
respect to this text, and we encourage the reader to integrate the two to
have a more complete picture.

Add-ons There are several auxiliary programs which are contained in the
folder generic, as we already discussed. We just stress that the programs
are well-documented by manuals that can be found in the relative subfolders
of the folder generic.

Chapter 4

Low-level features of Reduce
for Programmers

4.1 Extending Reduce with new operators.

There are different ways to extend Reduce.

New procedures can be introduced in a way which is covered by the
manual, and it is conformant to the general idea of “procedure” of any
modern programming language.

A Reduce-specific possibility is to introduce new operators. Operators
are different from procedures in many ways, and the purpose of this section
is to uncover some of the many features of operators which are hidden in
the source code of Reduce.

If you write f(a,b,c) in an expression I will call f an “operator”. One
case of that is a sort of abstract operator with no special meaning so in alge-
braic expressions it just remains as f(a,b,c) with a visible f. Other sorts
of f are names of built-in nouns or verbs like df and int, and besselj and
part etc etc. So there are many hundreds of such and the main manual tries
to cover them. Some lie between, so eg sin(x) stays as just sin(x) mostly,
but in some contexts there may be rules like sin(x)^2 => 1 - cos(x)^2

or sin pi => 0 that are applied. There are also array names which at
some level are the same, but then v(3) simplifies to the third component
of the array v.

A “procedure” is one of these where somebody has given a rule for how
to process uses of the operator. So if you say procedure inc x; x + 1;

51

52
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

then (inc 1) becomes 2 and inc y becomes y+1 and you should never end
up with the word inc visible in your output. Note that the sequence

procedure inc x; x := x + 1;
v := 2;
inc v;

displays the value 3 as the result from inc v, but the value of the variable
v remains as 2 - passing it as an argument to inc can not lead to its value
changing. Overlapping with the concept of procedures is the idiom

for all n let dec(n) => n-1;

i.e. use of an unconditional rewrite rule. The rewrite rule is activated by
sort of making a full expression that might have instances of dec in it then
pattern matching to find them and replace them. I usually expect it to
be way slower. But there are times it can provide more flexibility. The
RHS of a let statement typically does not have program-style sequences of
begin ... end on it while procedures often do.

If you go algebraic procedure foo x; ...; that defines a lisp-level
function called foo and gives foo the opfn property, so it is if you like an
operator that has a special treatment by the simplifier so that when it is
seen the function gets called.

If you just say operator xx then xx gets given a simpfn of simpiden
that again tells the simplifier how to handle it, and in general it makes
xx 2 remain as xx 2. If at some stage you set up let rules etc then the
simplifier applies them using what I expect to be slow pattern matching
- but of course pattern matching can be more flexible than activating the
recipe of a little procedure.

Operators can be introduced in algebraic mode or in symbolic mode.
Both algebraic and symbolic operators are implemented in

packages/alg/algdcl.red, together with the function remopr that
is used if something is to cease to be an operator and all the flags (boolean
put/get properties) that could have accumulated are removed. Then
alg/reval.red contains the definition of aeval that “evaluates” an
expression in algebraic mode. And alg/simp.red is also part of the same
sort of stuff.

More in detail, in algdcl.red at the beginning you will find

4.1. EXTENDING REDUCE WITH NEW OPERATORS. 53

symbolic procedure operator u; for each j in u do mkop j;
rlistat ’(operator);

which introduced a new syntax for a statement

operator a1, b1, a2, ...;

that works by calling the mkop function in each item in the list.
The “procedure mkop” statement can be found in alg/simp.red.

Apart from some checks what that basically does is

put(’a1, ’simpfn, ’simpiden);

where simpiden is a “simplification function” that behaves like the identity
transformation, so that (a1(3)) remains as (a1(3)). That means that
from symbolic code if you have a symbol and you want it to be treated by
algebraic code as the name of an operator in this sense all you have to go
is go

mkop ’x;

Note that to a decent approximation you can see what the symbolic
mode version of any algebraic mode stuff in Reduce is by going on defn;

after which the Lisp-form rendering is shown (and the code is not actually
obeyed)

1: operator a1;
2: on defn;
3: a1(x,y,z);

(aeval (list ’a1 ’x ’y ’z))

Since an operator applied to some arguments is stored as a list, it is acces-
sible (even) in algebraic mode by part as follows:

1: operator a1;
2: part(a1(x,y,z),1);

x

54
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

3: part(a1(x,y,z),0);
a1

4: arglength(a1(x,y,z));
3

Note that the function length will not work in the same way as arglength
on a1(x,y,z).

Let us see the differences between the parsed forms of an operator and
a procedure:

1: on defn;
2: operator abcd;

(operator (list ’abcd))
3: (x-3)ˆ3;

(aeval (list ’expt (list ’difference ’x 3) 3))
4: procedure foo(a, y); df(a, y);

(put ’foo ’number!-of!-args 2)
(flag ’(foo) ’opfn)
(de foo (a y) (list ’df a y))

while in Symbolic mode you might write

x := mksp(’x, 1) .* 1 .+ nil; % "x"
xm3 := addf(x, -3); % x-3
p := exptf(xm3, 3) ./ 1; % now it is a quotient with denominator 1

now p is the Standard Quotient for (x-3)^3, which you might convince
yourself of by saying

prepsq p;

That is messier than

aeval ’(expt (difference x 3) 3);

which is what the algebraic mode does (in effect), but it is sort of what
aeval causes to happen. . .

Even if just for testing purposes one of the first things anybody starting
out with symbolic mode Reduce will want to do involves setting up a link

4.1. EXTENDING REDUCE WITH NEW OPERATORS. 55

between the user-level algebraic world and the new world of data structures
and low level code that they are entering. Here are some recipes for different
ways to achieve this:

symbolic operator f1;

symbolic procedure f1 a;
<< print a;

print list(’times, list(’quotient, 22, 7), a) >>;

a := (1-y)ˆ3;

f1 a;

The output from print shows that the function f1 has been passed a prefix
version of the simplified form of its argument a, ie

(plus (minus (expt y 3)) (times 3 (expt y 2))
(minus (times 3 y)) 1)

The value returned as also a prefix form, which here is the product of (22/7)
and the argument. So by declaring something a “symbolic operator” you
get a chance to define your own function where input and output are both in
prefix form. You may of course use simp and prepsq to convert to internal
representations inside your own code. Sometimes it can be useful to use
mk!*sq to wrap up a result that is in SQ form for the return here.

symbolic procedure simpf2 a;
<< print a;

print (355 . 113) >>;

put(’f2, ’simpfn, ’simpf2);

f2 a;
f2 ((1-y)ˆ3);

If you use put to give some name a simpfn property then the function you
provide will receive a list of prefix forms and here the variable a will just
be passed as itself (while with the symbolic operator case it got expanded

56
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

to its value). The function must return a SQ this time, so in my example I
use just the SQ for the number (355/113).

There are extensions to and variations on the above, but the examples
shown here may be enough to get you started. Perhaps a point I should
explain is that when there are let rules in play with Reduce there can be
an issue as to whether an expression needs scanning again to ensure that all
transformations have been applied, and this can interact particularly with
mk!*sq. Some of the variants on functions (eg simp vs simp!*) may relate
to this sort of issue. I view coping with it as an advanced topic and so will
not discuss it further here!

The issue of defining operators within procedures could arise; consider
things like the following:

1: operator f;
2: x := y;
x := y
3: y := z;
y := z
4: procedure hah w; df(f w, w);
hah
5: hah x;
df(f(z),z)

Within hah does w stand for w, for x, for y or for z? Within hah is there any
way to differentiate with respect to x or y? The issue is the relationship
between the algebraic symbol called x and the programming language vari-
able(s) called x. Algebraic mode does not provide a notation to be explicit
about when you evaluate things, or how many levels of definition should
be worked through. This is the case for operator names as well as simple
variables.

So in symbolic mode the worry does not apply. You always do exactly
one evaluation, and you can use ’x to mean “x itself” and x to mean “the
value of the variable x.

So now consider

algebraic procedure ttt x;
<<

operator x;
{x 1, x 2, x 3}

>>;

4.2. PROPERTIES OF SYMBOLS AND THEIR USE 57

now try

load_package rprint;
lisp rprint cdr getd ’ttt$

to see the Lisp level version. When I try that it DOES let me go

ttt banana;

and get back {banana 1, banana 2, banana 3} so I can define new oper-
ators within a procedure. . . but to get an interesting new name for one may
be harder in algebraic mode.

4.2 Properties of symbols and their use

In this section we will explain how properties are used at a Lisp level inside
Reduce.

In Lisp any item is either an atom or not. The function call (atom x)

will test if x is an atom. If something is not an atom it is a pair, and car

and cdr access its left and right components. You can create a new pair by
using the function cons. Thus (car (cons p q)) gets you back p.

(cons a (cons b (cons c (cons d nil)))) can be done using
(list a b c d). Lists of the shape ((k1 . v1) (k2 . v2) ...) i.e.
(cond (cons k1 v1) (cons (cons k2 v2) . . . are known as association
lists (function assoc scans them) and are thought of as a way to have a
table with k1, k2 as keys. cons is used often enough in the Reduce sources
that a shorthand syntax for it is provided: an infix dot (.) invokes it.

There are a bunch of different sorts of atom. In each case there will be
a function to detect that case and then functions that operate on that sort
of data. Strings are mostly used for printing not for computation, e.g.

"string" (stringp x) (print "message")

Perhaps the easiest suggestion for somebody who want to get started with
string manipulation is to note that the function explode2 converts a string
into a list of its constituent characters and functions like compress and
list2string can be used to convert in the other direction. Any manner

58
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

of string searching or concatenation becomes straightforward when it is
performed on lists of characters.

Numbers come in a number of sub-flavours, and numberp recognises all
1, 2, 3 (fixp x) (plus x 3)

1234567890123456 [ditto but a bignum]
1.234 (floatp x) (plus x 3.14159)

Small integers may be handled with extra efficiency and if you are certain
that inputs and outputs are small (in CSL up to ±227 maybe) you can use
(iplus x 3) rather than (plus x 3) and go faster.

In Common Lisp there would be ratios and complex numbers built in
but those are not present in Standard Lisp. Long-precision floats are used
in Reduce but implemented as pairs of integers (mantissa and exponent)
and not as primitive objects.

Vectors, hash tables, (maybe) character literals and other things may
exist but are usually not very central to usage such as Reduce. Well where
they are needed they are very valuable indeed, but they live in corners. Eg
for vectors (and I will use rlisp not raw lisp syntax here) are used as in

v := mkvect 10;
for i := 1:4 do putv(v, i, i*i);
for i := 2:3 collect getv(v,3-i);

Now to the case I have been building up to - symbols. Firstly a symbol is
something that has a “print name” (which is liable to be a string) but unless
you do funny things that will be just one symbol with any given name. You
can have two quite separate strings each with the same characters in them,
but symbols are looked up in a table so that if you enter some name (eg
car or procedure) you get the same symbol each time. Each symbol also
has a property list, the capability to have an associated (global) value and
the capability of having a function definition associated with it.

All the built in functions like car, cdr, cons, plus etc exist as symbols
built into Lisp with the even lower level explanation of those functions
attached to them. In csl any symbol where nobody has defined a function
for it has i_am_an_undefined_function as its function definition! Well
that may not be the exact internal name used but you see the idea maybe.

Any symbol that has been declared fluid or global has a (valid) global
value when accessed as a variable. There are a few special cases. The
symbol nil has itself as its value and you can not change that. nil is used

4.2. PROPERTIES OF SYMBOLS AND THEIR USE 59

to represent “false” in tests. t has the value t and is by convention used
for true, but in fact anything non-nil will be treated as true.

Now to the real question, properties. A symbol can have properties and
you set one up by going

put(’symbol ’propertyname ’value)

and later on retrieve the value using

get(’symbol ’propertyname)

A plausible implementation is that the data structure for a symbol includes
an association list known as the symbol’s “property list”. There is no
guarantee that this is how it is done but it is a good conceptual model
at the very least. So at the rlisp level something is given a property any
time you see put(’name, ’propname, <value>) and the property remains
in place from then until you chance it with a new put or remove it using
remprop or the Lisp (Reduce) run ends. When Reduce is being built it
checkpoints its state at the end so that function definitions, variable values
and properties are saved in the image file to be reloaded when you start up
Reduce . . .

Sometimes a function deflist does multiple property list settings at
once. flag and flagp and remflag deal with (in effect) properties whose
value is restricted to being either nil or t.

“Having a property” is not a metaphysical state. It is just a statement
that if the code used get it will retrieve what put placed there.

This is a bit like “a variable has a value”. After somebody has obeyed
x:=3 the variable x has a value (which is 3). In general the stage at which
anybody notices this is when they ask for the value of x! So similarly a
property being associated with a symbol is only relevant or noticed when
the code uses get to see if it is there. The function aeval in Reduce

explicitly looks for simpfn, opfn etc. properties when it is trying to simplify
an algebraic expression...

A symbol can have as many properties as you like, and in some sense
properties are not “defined” in any one place. There will be lines of code
that do put and lines of code that do get but there is no obligation for
these to be close together.

60
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

There are well over 200 different property names in use within Reduce:
some are used e.g. by the compiler, some just by specific packages, some
more centrally. There is no central registry that lists all of them – thus
their exact behaviour needs to be discovered (supposed you actually need
to know) by searching the code and reading parts that used them.

Again, we suggest to read the “Primer” [5] for another view on the above
topic.

4.3 A bit on parsing

How does the parser/evaluation mechanism work? At what stage the eval-
uator understands that a symbol has a property? How the property is
effected?

Firstly parsing and syntax are a quite separate issue from evaluation.
You can get just parsing done by going “on defn;” and typing some Reduce
in. You get echoed the internal form for the stuff. In symbolic mode 2+3
will parse into (plus 2 3). In algebraic mode you may get calls to aeval

etc. interposed.

Evaluation is then just executing the stuff you see viewing it as a prefix
tree as in (plus 2 3). The “plus” is the name of a function to call and 2
and 3 are its arguments.

Sometimes when you create a new body of Reduce code you may wish to
extend the system’s syntax. This section gives an overview of what could be
involved, because different styles or levels of extension will require different
techniques and amounts of work.

New (prefix) operators

Having new syntax that just amounts to a newly defined name for a function
or operator has to some extent been covered already. If a symbol is tagged
with opfn or simpfn then Reduce will know that use of that name must
trigger simplification via the appropriately specified body of code. If this is
can suffice for you then everything is liable to be simple!

4.3. A BIT ON PARSING 61

Operators with non-alphanumeric names

Sometimes people wish to use a new bit of syntax that involves a new op-
erator written using special characters. There are existing packages that
give an interpretation to “-->” and “::-” as well as “><” and “<>”. The
function newtok is used to make new sequences of punctuation marks com-
bine to form single symbols, and precedence can then be used to control
how expressions group. This form of extension should not be undertaken
lightly if only because we do not have any organised central way to ensure
consistent use of such syntax across all available modules. However once a
new (infix) operator has been introduced in this manner it can be used very
much as if it had been an ordinary prefix-notated one. Search the Reduce

sources for instances of the use of newtok to find examples to build from.

Syntax introduced using a new keyword

More extreme than new operators will be fully new syntax introduced by
a keyword. If a symbol is given a stat property then that specifies a
function that will be called to parse whatever material follows an instance
of the given symbol. Perhaps good examples to inspect to get an idea of
what might be done are in packages/rlisp/loops.red where this scheme
is used to implement the syntax that Reduce uses following the keywords
repeat and while. Other places in the packages/rlisp directory use the
same scheme to set up most of the rest of the varieties of Reduce statements.
A special case is if the stat property is rlis that makes the parsing action
to be to call the function rlis and this just reads a comma-separated list
of expressions and builds them into a list. There are many cases where that
is about all you need to do to get your extra syntax supported!

Generating elaborate code from your new syntax

Simple parser extensions using the stat property will tend to start off
by building a list structure that is a direct reflection of the syntax
used. For complicated formats it may be really useful to transform or
expand that before it is really used by the rest of Reduce. One con-
crete example of this is given by the for statement as implemented in
packages/rlisp/forstat.red. If a symbol is given a formfn property
that specified a function that is called to re-form expressions parsed to give

62
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

an initial structure headed by that word. The form-function is given extra
arguments that tell it what variables are in scope and whether parsing is
being performed in symbolic or algebraic mode, and it should return some-
thing that could have corresponded to some more verbose Reduce syntax.
This expansion process can discard material, duplicate other bits, rearrange
and generate its output as if the input had been whatever mix of symbolic
and algebraic mode material you wanted. You might also use the form

scheme to perform checks on input and reject cases that are liable to cor-
respond to user mistakes. Searching for formfn will find the existing uses
of this scheme.

4.4 A bit on domains

If you have a polynomial in 1 variable it has a “variable” (and I will use x

here) and a “domain” where the domain is the ring or field that coefficients
are taken from. So in simple cases with Reduce an integer will be a domain
element. And for historical reasons zero is denoted by nil not by 0.

If you want a polynomial with a high precision float as a coefficient then
the “domain elements” have to be composite structures since simple Lisp or
machine floats have a fixed limited precision. This is coped with by Reduce

putting a coefficient that is something like

(!:rd!: mantissa . decimal-exponent)

where the two components are each integers.

Sometimes you have polynomials whose coefficients are reduced modulo
some (usually) prime, then the coefficients (domain elements) are given as
(!:mod!: . nn) where nn is smaller than your modulus.

Also complex numbers etc etc etc. In the concrete representation this
is OK because each domain element is either atomic (a symbol or number)
or has a symbol as its car. A term in a polynomial will always be

((v . deg) . coeff) . rest-of-lower-degree-term

so the test

4.5. EVALUATION, SIMPLIFICATION AND CONVERSION 63

if atom u or atom car u then .. % a cofficient / domain element
else .. % a term non-constant polynomial with a leading term

does the job. This is in fact written in the code as

if domainp u then ...
else ...

and the inline function domainp is just a shorthand for the longer test.
We observe that the “Primer” [5] treats the same topic in more details,

and we invite the interested reader to consider also that text on this issue.

4.5 Evaluation, Simplification and

Conversion

As has been explained, Reduce has several different representations for al-
gebraic expressions. Prefix forms (PF) are what the parser creates when
expressions are initially read in. Standard Forms (SF) are for polynomials,
while Standard Quotients are pairs of SFs and are the most important and
general canonical representation that Reduce uses. In simple terms Reduce
performs its calculations by starting with PFs and converting them into
SQs. In the process of that conversion everything is normalised – and it is
hoped that that corresponds reasonably to a user’s concept of “simplifica-
tion”. To a good first approximation printing is achieved via a route that
first converts an SQ back into prefix form, which can then be rendered in
some human readable form.

It is thus useful to know about the functions within Reduce that perform
conversions between the representations. There are a number of subtleties:

PF to SQ The functions simp and simp!* accept a prefix form and evaluate
it, returning an SQ. For most purposes there is little to distinguish
the two, and simp is slightly faster. simp!* can perform a few more
transformations, as illustrated by:

on expandlogs;
off precise;

64
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

lisp;
simp ’(plus (log x) (log y));
simp!* ’(plus (log x) (log y));

where the call using simp!* performs extra scans over the expres-
sions to combine the two logarithms into log(xy). The code for these
functions is in alg/simp and other differences (eg some relevant when
non-commuting variables as used in the High Energy Physics pack-
age, or for some uses of complex numbers arises). Most frequently you
can just use simp. Note that the difference illustrated above where
simp!* converts log x + log y to log(xy) is only activated if various
flags such as expandlogs are set, and that transformations of that
sort need very careful consideration in the light of possible issues of
the multiple branches of the logarithm function!

There is a quite separate scheme that does not so much convert a PF
into an SQ but embeds it within one with relatively little simplifica-
tion. This is mksq by using the PF as a “kernel” (i.e. treating it as if
it was a a variable) and building an SQ that stands for that raised to
a given power. . . except that if the variable raised to the indicated is
the subject of a substitution rule (such as let x**5 = 0;) the sub-
stitution will be applied. Prefix forms where the leading operator is
not a simple arithmetic one (for instance the cases where it is a trig
function) typically use this.

SQ to SF A Standard Quotient consists of a pair of SFs, and these can be ex-
tracted using numr and denr. This is very often useful in cases where
your code expects a polynomial, because simp will process an argu-
ment to obtain an SQ and then numr can extract the (polynomial)
numerator. You will sometimes want to verify that the denominator
is just 1 and complain otherwise.

SF to SQ The infix operator ./ combines a numerator and denominator to be
an SQ. The function gcdchk (in poly/polrep.red) can then be used
to ensure that it is expressed in its lowest terms - in other words
that any common factor between numerator and denominator has
been cancelled. In almost all circumstances it should be considered
seriously bad form to create a data structure representing an SQ that

4.5. EVALUATION, SIMPLIFICATION AND CONVERSION 65

does not have common factors cancelled or that has a negative number
as its denominator!

SF or SQ to PF The functions prepf and prepsq convert SFs and SQs back into prefix
forms in a full and obvious way, while mk!*sq wraps an SQ up in a
small prefix form wrapper (using a pseudo-operator !*sq). This latter
is used where a prefix form is required for some reason but where it
is expected that the value will soon be needed as an SQ again, so
it avoids both the costs of conversion to prefix form and those of
converting back. By hiding expressions away like this there would be
a possibility that formulae packed by mk!*sq would not be sufficiently
re-simplified if new let rules (and the like) were introduced between
packing and the short form unpacking that simp would perform to
unpack. To cope with this the special !*sq prefix form contains a flag
such that all such forms share a single fragment of lisp data. When a
new let is performed this data is overwritten (see alg/rmsubs.red)
in a way that will force re-scanning of previously scanned forms.

PF to PF, simplifying The simple solution is normally to simplify a form u by going
prepsq simp u.

SQ to SQ, re-simplifying This can need to be done if some (new) substitutions need to be ap-
plied to an expression that you had already converted into an SQ. The
function resimp does this, and as can be seen from its implementation
(in alg/simp.red) it merely calls subf1 (from alg/sub.red). Well
the term “merely” here perhaps understates all of the complications
associated with pattern matching and re-writes!

Other subsidiary types Various other sorts of data tend to end up hidden within prefix or
SF structures. For instance lists are stored as prefix items with the
“operator” list to mark them. Matrices are not fully free-standing
items – a (global) variable can be either a scalar or matrix value and
the avalue property associated with the name of the variable identifies
this. For scalar values a single prefix form is then kept, while for a
matrix a list of lists of prefix forms is used.

Domain elements are items used in SFs as coefficients. The most
important case is that where a value is a simple integer, in which case
the Lisp integer value is used directly (except that as a special case nil
is used to denote the value zero: historically it that used to be a useful

66
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

performance optimisation even though now it is probably a cost not
a benefit). Other cases are stored using a SF that has an atomic first
element (where one that stood for a polynomial would have a pair
standing for a leading power paired with an associated coefficient).
The atom !:rd!: there introduces a floating point value, with one
variant to cover one that are stored to native machine precision and
another for higher precisions. Reduce itself supports complex values
and modular arithmetic. Extending support to provide a new domain
might involve significant work but would be possible.

4.6 Substitution

Substitution is described in detail in its aspects which are of interest for
users in Reduce’s manual [2]. Here we would like to point the reader to the
files where substitution is defined, and to some of the more relevant features
that could be of interest for a programmer.

The main substitution schemes are represented by sub and let. sub

is defined in the file packages/alg/sub.red and let is defined in the file
packages/alg/forall.red. The main features can be summarised as fol-
lows.

sub The command is local in scope; this means that substitution is per-
formed only when the command is issued, and only on the expression
which is passed to the command. Moreover, the command performs
the substitution only once, eg

sub({x=y+1,y=-x-2},xˆ2+yˆ3);

returns the standard form of ((y+1)^2+(-x-2)^3).

let The command sets rules which apply globally from the point at which
the command is issued. This means what follows. Suppose that the
expression expr contains a variable x which is to be replaced by the
rule x => y+1 (issued in a previous let command). Then as soon as
expr is reevaluated, for example if expr is used in a bigger expression,
then every instance of x is replaced by y+1 in expr.

If we are in the case when the replacement expression still depends on
the variable that is being replaced through another rule, then all rules

4.6. SUBSTITUTION 67

are applied through recursive pattern matching until the situation
when rules become independent is reached. Here ‘independent’ means
that any variable on the left-hand side of any rule does not appear in
any right-hand side of any other rule. For example, the command

let {x => y+1,y => -x-2};

implies a substitution by {x => -1/2,y => -3/2}.

Substitutions that replace simple indeterminates with values are rea-
sonably easy to use. Things become harder when the pattern sought
becomes composite.

The mechanism of let rules is very powerful, but abusing it leads to
great memory occupation and consequent slowing of the system. This can
be caused by recursion in following ways:

• a long list of rules may contain a lot of cross-dependencies between
variables to be substituted. However, it should be pointed out that
there are concrete examples in which pattern-matching solving of a
huge system of equations is faster that the standard solve routine!

• let commands create a tree of subexpressions that are bound to each
variable to be substituted. Further rules can increase the branches of
the tree in a way that at least empirically can lead to high costs.

A chance to avoid the above problems is the command where. This
command is implemented in the files packages/alg/forall.red and
packages/rlisp/where.red. Internally it is implemented as a local let
command, so that 1 - the rules are evaluated recursively until independence
(as above) is reached, then 2 - the rules are applied to the one expression
which is on the left-hand side of where. Such an expression, after that rules
are applied, is returned, and immediately afterwards the rules cease to have
any further effect.

The simple case of substitution is where the item being substituted for is
a single literal symbol. Two more complicated cases arise and one significant
further complication can intrude.

The first is that the target for a substitution can be an expression,
so for instance let x^2 + y^2 => 1 will be accepted and will at simplify

68
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

2*x^2 + 3*y^2 into y^2 + 2. But it will also lead to x^2 being converted
to -y^2 + 1, and so it could be that using the form let x^2 -> 1 - y^2;

will be less confusing! A common use of substitutions for expressions will
be a case like let eps^3 => 0 which leads Reduce to discard third and
higher powers of eps.

The second issue arises when operators are present in the substitution
pattern, as in let sin(x)^2 => 1 - cos(x)^2;. If written like this the
rule will apply to uses of sin where the argument is literally x and so
sin(y)^2 would remain untouched. The rule can be made more general by
prefixing the first use of the free variable x with a tilde so it ends up as
let sin(~x)^2 => 1 - cos(x)^2. An alternative to this may be to use
syntax involving the phrase “for all x”.

A complication arises in the internal way that Reduce handles substi-
tutions when there is also an existing built-in rule that deals with some of
the operators present in the pattern. A particular case of this might be
substitutions that add a new rule for differentiation, where arranging that
the existing and new rules cooperate nicely can be delicate. The limit of
what can be explained here is just that such cases may need special care –
and perhaps advice on a case by case basis from experts!

4.7 Adding a new module to Reduce

This is a cook-book style set of instructions for adding a new module, while
I will suppose is to be called maud. Add a line

(maud "maud" test csl psl)

to the file packages/package.map. You will almost certainly want to add
it close to the end of that file. The first entry on your line is the name of the
new module you are creating. The second item (the string) is the name of
the sub-directory of packages that its source files live in. If the word test

is present then you will have provided a .tst and a matching .rlg file.
Your test should run in a reasonably short amount of time – say at most a
few seconds. Finally the words csl and psl are present to indicate which
Lisp systems can support your code. Only in extraordinary circumstances
should you consider providing something that will only work with one of
the Lisps.

4.7. ADDING A NEW MODULE TO REDUCE 69

Create a directory maud in packages and in there place files with names
maud.red, maud.tst, maud.rlg, maudsub1.red and maudsub2.red. A
proper package should also have a file maud.tex that provides a section
suitable to include in the Reduce manual or to provide a stand-alone expla-
nation of what the code does and how it achieves its purpose.

The file maud.red will contain the text:

module maud;
% Author: ...
% Redistribution and use ...
% <copy the BSD license from any other source file>
% ... SUCH DAMAGE.
%

create!-package(’(maud maudsub1 maudsum2), nil);

% Place fluid and global declarations here

endmodule;

The body of your code will be in maudsub1.red and maudsub2.red (you
may use one, two or as many files as makes sense for your package. I am
illustrating this imagining that two make sense.

Each source file will read something like

% maudsub1.red
% Author: ...
% Redistribution ...
module maudsub1;
symbolic procedure ...
endmodule;
end;

Now to rebuild your code you can start a fresh Reduce and go

package!-remake ’maud;

or just arrange to recompile the whole of Reduce. If anything seems to
have become particularly confused or damaged the simplest recovery option
generally goes

70
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

cd <the reduce trunk directory>
rm -rf cslbuild pslbuild
./configure --with-csl (or --with-psl)
make

which gets rid of any previously part-built files and so is as close to guar-
anteed to restore sanity as anything. Of course before following this path
ensure you have not left personal files anywhere within the cslbuild or
pslbuild directories!

The scripts maud.tst is a test file, with maud.rlg being the expected
output from running it. This will be used by the scripts/testall.sh

scheme that runs tests of all Reduce packages. To avoid worrying users it
is good to keep maud.rlg up to date as otherwise those who test their own
installation of Reduce may fear that they have a problem.

A reasonable way to create maud.rlg once your package has been build
is to select the Reduce trunk directory as current and issue the command

scripts/test1.sh --csl maud

which should try your maud.tst file and create a log in
csl-times/maud.rlg. You can then copy that file to packages/maud and
on subsequent uses of test1.sh or testall.sh output will be compared
against it. So when you change your code or test script in ways that alter
the test log please regenerate and install a clean version using this recipe.
Of course you could test using PSL rather than CSL.

When you have got past the basics you might wish to consider more so-
phisticated issues like auto-loading your code or pre-loading any supporting
package that your code might need just before loading your package.

If you want your code to be auto-loaded on use you will need to add
line to the file packages/support/entry.red.

Yes that is roughly it. The defautoload statement can have various
forms:

defautoload(name); % The parens are optional here!
defautoload(name, packagename);
defautoload(name, package, functiontype);
defautoload(name, package, functiontype, n_args);

4.7. ADDING A NEW MODULE TO REDUCE 71

where name is the name of a symbolic mode function. If other things are
omitted then packagename defaults to name, functiontype to expr and
n_args to 1. I think that package can also be a list of packages.

(For algebraic mode things there are defautoload_operator

and defautoload_value. And all this happens in
packages/support/entry.red).

The autoload stubs set up by entry.red are present in Reduce before
any other things are loaded - or perhaps better to say when only the “core”
functionality is loaded. So if you want e.g. cde to be a function that people
can call you may end up putting either

defaultoload(cde, cdiff);
put(’cde, ’simpfn, ...);

in entry.red, or maybe cde will be a separate package related to cdiff

but loaded separately, then you might have

defautoload(cde, (cdiff cde));
put(’cde, ...);

You need the put because without it an algebraic mode person would not
get to have the list-level function called for them. OK so loading the package
puts that in place again, but that does not hurt.

See also examples there like

symbolic operator meminfo;
defautoload(meminfo, rltools, expr, 0);
symbolic operator fastresultant;
defautoload(fastresultant, rltools, expr, 3);

for things that are symbolic operators with other than just 1 argument.

When you go

defaultoload(abc, def);

it is distinctly as if you had gone

72
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

symbolic procedure abc(x);
<< load!-package ’def; % I REALLY hope this (re)defines abc!
abc x >>; % the real version from package def.

so when this version of abc is called it overwrites itself with the ”proper”
version.

When you are sufficiently happy that your new package would be of use
to others (and especially if you are willing to provide at least some level of
support when people try it out) contact existing Reduce contributors and
offer your code to the project. When contributing any code to Reduce you
need to be ready to confirm that your code does not contain components
that are encumbered by license terms that would conflict with the BSD
license that Reduce uses and that you both have the right to and are happy
to release your code on those terms. If you inspect the whole of the Reduce

source tree you will find the names of the many existing contributors.

4.8 File and Directory management, Shell

access

Sometimes a Reduce package (or indeed some user level code) will want
to interact with the file-system of the computer it is run on. It may want
to discover what the current directory is or charge that. It may want to
enumerate, rename or delete files. It could need to run some command or
program external to Reduce. The Standard Lisp Report did not specify
how this should be done: it thought almost entirely about support for the
algebraic calculations to be done within Reduce and almost totally ignored
issues of interfacing with the rest of the world. Thus there is some delicacy
in this area! To be specific, it can not be guarantee that the CSL and
PSL versions of Reduce will support the same functionality. It is also easy
to stray into areas where Windows, Unix/Linux/BSD and Macintosh sys-
tems will have different and incompatible conventions, so producing robust
portable code involved significant care.

In general the facilities to interact with the underlying computer exist at
the level of symbolic (or system-level) coding and will not be immediately
available to those who write pure algebraic mode code, so access to them
is perhaps one of the benefits of fully understanding this document.

4.8. FILE AND DIRECTORY MANAGEMENT, SHELL ACCESS 73

It is not possible to document or describe how to solve all possible
problems here, and so general suggestions will be made. The first is that
both CSL and PSL do provide their own set of functions for operating and
file system interfacing. For PSL these can be found documented in the
manual, and for CSL they are probably best identified by searching the
source code in csl/cslbase and reading the comments. Many of those
functions that do exit in CSL are broadly modelled after Common Lisp
ones, so checking Common Lisp documentation may provide leads. You
will certainly find that there are functions there to manipulate the current
directory and to enumerate and remove files. In some cases a long-stop is
provided by the function system. This accepts a string and attempts to
interpret it as a command to be obeyed as if it has been presented from a
terminal.

There are examples of some of this sort of activity, including
the creation of strings to pass to system, in the source code in
packages/crack/crutil.red where the code to delete individual or mul-
tiple files may be particularly illuminating. Note the customisation where
different recipes are involved in Windows and as between the CSL and PSL
worlds. Code that you write that you are certain will never be used by
anybody else and will always be run on just one computer can avoid some
of that complication – but of course we would want to encourage authors
of interesting code to prepare it in a form that could me merged into the
main Reduce distribution and would run everywhere.

If you have sufficiently strong need for some further control of your
computer from within Reduce and have checked carefully and it can not
be achieved using the current system then the Open Source nature of the
code means that you could consider adding extra features in to either CSL
or PSL (or both) to help you achieve your aims. If your addition was
liable to be of significant use to others it may be accepted by the project
to be added to the main versions. Full guidance about such steps would
call for a companion to this document – perhaps called “Inside CSL” or
“Inside PSL”! But perhaps especially in the CSL case you might find that
reading the existing C code and patterning your new code on some existing
function should not be too challenging. Over time there have been a number
of experiments of this style made by the current developers where things
are not necessarily tidily enough finished off for general use but could form
a basis for future projects. I will particularly note that there have been
experiments in parallelism using both PVM and MPI and links down to

74
CHAPTER 4. LOW-LEVEL FEATURES OF REDUCE FOR

PROGRAMMERS

numerical libraries. It could be that “Here be Dragons”, but to a computer
scientist that is a good challenge not a reason to flee.

Bibliography

[1] F. Brackx, D. Constales, Computer Algebra With Lisp and Reduce:
An Introduction to Computer-Aided Pure Mathematics, Springer 1991.

[2] Anthony C. Hearn, REDUCE: User’s and Contributed Packages Man-
ual, Version 3.8 Santa Monica, CA and Codemist Ltd. July 2003. The
file manual.pdf that should be present as part of a distribution of
Reduce is an updated version of this.

[3] Malcolm A. H. MacCallum and Francis J. Wright, Algebraic Comput-
ing with REDUCE Lecture Notes from the First Brazilian School on
Computer Algebra Vol. 1, Series Editors: Marcelo J. Rebougas and
Waldir L. Roque, Clarendon Press, ISBN 978-0-19-853443-3 (1991).

[4] Jed Marti, RLISP ’88: An Evolutionary Approach to Program Design
and Reuse, World Scientific, 1993.

[5] Hubert Melenk, Reduce Symbolic Mode primer.

[6] Gerhard Rayna, Reduce: Software for Algebraic Computation,
Springer 1987.

[7] Sourceforge, the official hosting website where Reduce can be found at
http://reduce-algebra.sourceforge.net/.

[8] Subversion, software and documentation: http://subversion.

apache.org/, graphical user interfaces: http://en.wikipedia.org/

wiki/Comparison_of_Subversion_clients.

[9] J. Marti, A.C. Hearn, M.L. Griss, C. Griss: The Standard Lisp Report.

75

http://reduce-algebra.sourceforge.net/
http://subversion.apache.org/
http://subversion.apache.org/
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

	Preface
	Contents
	Introduction
	Building Reduce
	Ready-to-use binaries
	Fetching the source code
	GNU/Linux
	OS X (Macintosh)
	Windows
	On portability of Reduce source code
	Less supported variants

	The Reduce source code
	The structure of Reduce source code
	An overview of how Reduce gets built
	The PSL Lisp system
	The CSL interpreter
	Algebraic and Symbolic mode
	Central parts of Symbolic Mode Reduce
	On the legacy feature of upper case coding
	Data structure in Reduce
	Higher level Reduce packages
	Finding out specific features in the Reduce sources
	Finding the documentation of Reduce

	Low-level features of Reduce for Programmers
	Extending Reduce with new operators.
	Properties of symbols and their use
	A bit on parsing
	A bit on domains
	Evaluation, Simplification and Conversion
	Substitution
	Adding a new module to Reduce
	File and Directory management, Shell access

	Bibliography

