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Abstract

Variational sequences are complexes of modules or sheaf sequences in which
one of the maps is the Euler–Lagrange operator, i.e., the differential operator
taking a Lagrangian into its Euler–Lagrange form. In this review paper we dis-
cuss variational sequences on finite order jets, with special emphasis on Krupka’s
approach. We also discuss recent results on this topic as well as possible research
directions.
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Introduction

In the Seventies, during a process of geometrization of the calculus of variations, it
was realized that operations like passing from a Lagrangian to its Euler–Lagrange form
were part of a complex, namely, the variational sequence. Foundational contributions
to variational sequences are in the papers [3, 7, 12, 39, 40, 41, 42, 43, 44, 45].

Among the problems which were solved by the variational sequence was the so-called
global inverse problem of the calculus of variations: given a set of Euler–Lagrange equa-
tions, the vanishing of Helmholtz conditions is a necessary and sufficient condition for
the existence of a local Lagrangian for the given equations; does there exist a global
Lagrangian? It was proved that the answer is in the cohomology of the variational
sequence. More precisely, the cohomological obstruction for always having a global La-
grangian is the n+1-st de Rham cohomology of the space of independent and dependent
variables.

The geometric framework for variational sequences is that of jet spaces. Infinite
order jet spaces were used as a rule, with the exception of [3]. There are some technical
reasons for that choice: the first and most important is that on infinite order jet spaces
the contact distribution is integrable and admits an intrinsic direct summand. This
fact leads to much simpler computations.

On the other hand, using infinite order jets one simply drops any information on
the order of the objects involved in the computations. In this sense, the use of finite
order jets can lead to finer results. A first approach in this sense was in [3]. In that
paper the finite order variational sequence was truncated after the space of Euler–
Lagrange forms. Moreover, in order to obtain the solution of the global inverse problem
the authors resorted to infinite order jets. Another approach was through C-spectral
sequences in [8, 9]. But it used one conjecture about the structure of contact forms (see
Theorem 1.3).

In [23] Krupka proved the above conjecture and was able to give the first formulation
of the (long) variational sequence on finite order jets. The formulation was different
from both the so-called variational bicomplex [2, 37] and the C-spectral sequence [7, 44].
The idea is rather simple: consider the de Rham complex on jets of order r. Then
a subsequence of forms which yield trivial contribution to action-like functionals is
defined. The quotient of the former sequence with the latter one yields the finite order
variational sequence.

In this paper, after a preliminary section on jet spaces and contact forms, we describe
Krupka’s finite order variational sequence. In the final section we discuss the state of
the research on this topic.
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an invaluable contribution to my mathematical education.
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Matematica http://www.altamatematica.it, and by the Dipartimento di Matematica
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1 Jet spaces

Manifolds and maps between manifolds are C∞. All morphisms of fibred manifolds
(and hence bundles) will be morphisms over the identity of the base manifold, unless
otherwise specified. In particular, when speaking of ‘forms’ we will always mean ‘C∞

differential forms’.

We recall some basic facts on jet spaces. Our framework is a fibred manifold

π : Y → X,

with dim X = n, dim Y = n + m, and n, m ≥ 1. We have the vector subbundle
V Y def

= ker Tπ of TY , which is made by vectors which are tangent to the fibres of Y .
For 1 ≤ r, we are concerned with the r-th jet space Jrπ; we also set J0π ≡ Y . For

0 ≤ s < r we recall the natural fibrings

πr,s : Jrπ → Jsπ, πr : Jrπ → X,

and the affine bundle πr,r−1 : Jrπ → Jr−1π associated with the vector bundle ⊙rT ∗X
⊗Jr−1π V Y → Jr−1π.

Charts on Y adapted to the fibring are denoted by (xi, yσ). Latin indices i, j, . . .
run from 1 to n and label base coordinates, Greek indices σ, τ , . . . run from 1 to m
and label fibre coordinates, unless otherwise specified. We denote by (∂/∂xi, ∂/∂yσ)
and (dxi, dyσ), respectively, the local bases of vector fields and 1-forms on Y induced
by an adapted chart.

We denote (symmetrized) multi-indices by capital letters: I = (i1, . . . , in) ∈ N
n. We

also set |I| def

=
∑

k ik and I! def

= σ1! · · · σn!. The sum of a multiindex with a Latin index
I + i will denote the sum of I and the multiindex (0, . . . , i, 0, . . . , 0), where 1 is at the
i-th entry.

The charts induced on Jrπ are denoted by (xi, yσ
I ), where 0 ≤ |I| ≤ r and yσ

0
def

= yσ.
The local vector fields and forms of Jrπ induced by the fibre coordinates are denoted
by (∂/∂yσ

I ) and (dyσ
I ), 0 ≤ |I| ≤ r, 1 ≤ i ≤ m, respectively.

An r-th order (ordinary or partial) differential equation is, by definition, a subman-
ifold S ⊂ Jrπ.

We denote by jrs : X → Jrπ the jet prolongation of a section s : X → Y and
by Jrf : Jrπ → Jrπ the jet prolongation of a fibred morphism f : Y → Y over a
diffeomorphism f̄ : X → X. Any vector field ξ : Y → TY which projects onto a vector
field ξ : X → TX can be prolonged to a vector field ξr : Jrπ → TJrπ by prolonging its
flow; its coordinate expression is well-known (see, e.g., [5, 37]).

The fundamental geometric structure on jets is the contact distribution (or Cartan
distribution) Cr ⊂ TJrπ. It is the distribution on Jrπ generated by all vectors which
are tangent to the image jrs(X) ⊂ Jrπ of a prolonged section jrs. It is locally generated
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by the vector fields

Di =
∂

∂xi
+ yσ

I+i

∂

∂yσ
I

,
∂

∂yσ
J

, (1)

with 0 ≤ |I| ≤ r − 1, |J | = r. It is easy to show that this distribution is not involutive
and does not admit any natural direct summand that complement it to TJrπ. While
the contact distribution has an essential importance in the symmetry analysis of PDE
[5], in this context the dual concept of contact differential forms plays a central role.

Let us denote by Fr the sheaf of smooth functions on Jrπ.
We denote by Ωk

r the sheaf of k-forms on Jrπ.
We denote by Ω∗

r the sheaf of forms of any degree on Jrπ.

1.1 Definition. We say that a form α ∈ Ωk
r is a contact k-form if

(jrs)
∗α = 0

for all sections s of π.
We denote by C1Ωk

r the sheaf of contact k-forms on Jrπ.
We denote by C1Ω∗

r the sheaf of contact forms of any degree on Jrπ.

Note that if k > n then every form is contact, i.e., C1Ωk
r = Ωk

r .
It is obvious from the commutation of d and pull-back that dC1Ωk

r ⊂ C1Ωk+1
r . More-

over, it is obvious that C1Ω∗
r is a sheaf of ideals (with respect to the exterior product) in

Ω∗
r. Unfortunately, C1Ω∗

r does not coincide with the ideal generated by 1-forms which
annihilate the contact distribution (for this would contradict the non-integrability).
More precisely, the following lemma can be easily proved (see, e.g., [23]).

1.2 Lemma. The sheaf C1Ω1
r is locally generated (on Fr) by the 1-forms

ωσ
I

def

= dyσ
I − yσ

I+idxi, 0 ≤ |I| ≤ r − 1.

The above differential forms generate an ideal of Ω∗
r. However, such an ideal is not

differential, hence it does not coincide with C1Ω∗
r. To realize it, the following formula

can be easily proved
dωσ

I = −ωσ
I+i ∧ dxi, (2)

from which it follows that, when |I| = r−1, then dωσ
I , which is a contact 2-form, cannot

be expressed through the 1-forms of lemma 1.2 because ωσ
I+i contains derivatives of order

r + 1.
The following theorem is an important achievement by Krupka. It has been first

conjectured in [9] (C1Ω-hypothesis), then proved in [23, 24].

1.3 Theorem. Let k ≥ 2. The sheaf C1Ωk
r is locally generated (on Fr) by the forms

ωσ
I , dωσ

J , 0 ≤ |I| ≤ r − 1, |J | = r − 1.

We can consider forms which are generated by p-th exterior powers of contact forms.
More precisely, we have the following definition.
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1.4 Definition. Let p ≥ 1. We say that a form α ∈ Ωk
r is a p-contact k-form if it is

generated by p-th exterior powers of contact forms.
We denote by CpΩk

r the sheaf of p-contact k-forms on Jrπ.
We denote by CpΩ∗

r the sheaf of p-contact forms of any degree on Jrπ.
Finally, we set C0Ω∗

r
def

= Ω∗
r.

In other words, CpΩ∗
r is the p-th power of the ideal C1Ω∗

r in Ω∗
r. Of course, a 1-contact

form is just a contact form. We have the obvious inclusion

Cp+1Ω∗
r ⊂ CpΩ∗

r.

It follows that Cp+1Ω∗
r is a sheaf of ideals of CpΩ∗

r, hence of Ω∗
r. Moreover, dCp+1Ω∗

r ⊂
Cp+1Ω∗

r.
Now, we would like to introduce a tool to extract from a form α ∈ Ωk

r the non-
trivial part (to the purposes of calculus of variations). In other words, we would like to
introduce a map whose kernel is precisely the set of contact forms. Such forms yield no
contribution to action-like functionals (see Remark 1.10). First of all, we observe that
eq. (2) and Theorem 1.3 suggest that such a map can be constructed if we allow it to
increase the jet order by 1. More precisely, it can be easily proved that the contact 1-
forms ωσ

I , with 0 ≤ |I| ≤ r−1 generate a natural subbundle C∗
r ⊂ Jrπ×Jr−1πT ∗Jr−1π ⊂

T ∗Jrπ [46]. We have the following lemma (see [32, 37]).

1.5 Lemma. We have the splitting

Jr+1π ×
Jrπ

T ∗Jrπ =

(

Jr+1π ×
X

T ∗X

)

⊕
Jr+1π

C∗
r+1, (3)

with projections

Dr+1 : Jr+1π → T ∗X ⊗
X

TJrπ, ωr+1 : Jr+1π → T ∗Jrπ ⊗
Jrπ

V Jrπ,

and coordinate expression

Dr+1 = dxi ⊗ Di = dxi ⊗

(

∂

∂xi
+ yσ

I+i

∂

∂yσ
I

)

,

ωr+1 = ωσ
I ⊗

∂

∂yσ
I

= (dyσ
I − yσ

I+idxi) ⊗
∂

∂yσ
I

.

Note that the above construction makes sense through the natural inclusions V Jrπ ⊂
TJrπ and Jr+1π ×X T ∗X ⊂ Jr+1π ×Jrπ T ∗Jrπ, the latter being provided by T ∗πr.

From elementary multilinear algebra it turns out that we have the splitting

Jr+1π ×Jrπ ∧kT ∗Jrπ =
⊕

p+q=k

(

Jr+1π ×
X
∧qT ∗X

)

⊕
Jr+1π

∧pC∗
r+1.

Now, we observe that a form α ∈ Ωk
r fulfills

π∗
r+1,r(α) : Jr+1π → ∧kT ∗Jrπ ⊂ ∧kT ∗Jr+1π,
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where the inclusion is realized through the map T ∗πr+1,r. Hence, π∗
r+1,r(α) can be split

into k + 1 factors which, respectively, have 0 contact factors, 1 contact factor, . . . , k
contact factors. More precisely, let us denote by Hq

r the set of q-forms of the type

α : Jrπ → ∧qT ∗X.

We have the following proposition (for a proof, see [23, 46, 48]).

1.6 Proposition. We have the natural decomposition

π∗
r+1,r(Ω

k
r) ⊂

⊕

p+q=k

CpΩp
r+1 ∧Hq

r+1,

with splitting projections prp,q : Ωk
r → CpΩp

r+1 ∧Hq
r+1 defined by

prp,q(α) =

((

p + q

q

)

⊙p iDr+1 ⊙⊙qiωr+1

)

◦ π∗
r+1,r,

where iDr+1, iωr+1 stand for contractions followed by a wedge product.

Note that the above maps prp,q are not surjective. See [46] for more details.

1.7 Definition. We say the horizontalization to be the map

hp,q : CpΩp+q
r → CpΩp

r+1 ∧Hq
r+1, α 7→ prp,q(α).

We denote by
Ω

p,q

r
def

= hp,q(CpΩp+q
r ) (4)

the image of the horizontalization; we say an element ᾱ ∈ Ω
0,q

r to be a horizontal form.

Probably the first occurrence of horizontalization is in [22]. Of course, horizontaliza-
tion is just the projection on forms which have no contact factors. Note that, if q > n,
then horizontalization is the zero map. In coordinates, if 0 < q ≤ n, then

α = αI1 ···Ih

σ1···σhih+1···iq
dyσ1

I1
∧ · · · ∧ dyσh

Ih
∧ dxih+1 ∧ · · · ∧ dxiq

and the coordinate expression of the horizontalization is

h0,q(α) = yσ1

I1+i1
· · · yσh

Ih+ih
αI1 ···Ih

σ1···σhih+1···iq
dxi1 ∧ · · · ∧ dxiq , (5)

where 0 ≤ h ≤ q. The coordinate expressions of hp,q can be obtained in a similar way
(see [3, 23, 24, 46]).

Note that if n > 1 then the above form is not the most general polynomial in (r+1)-
st derivatives, even if q = 1. For q > 1 the skew-symmetrization in the indexes i1,. . . ,
ih yields a peculiar structure in the polynomial, in which the sums of all terms of the
same degree are said to be hyperjacobians. Finally, we observe that if n = 1 then the
horizontalization is surjective on the space of forms with affine coefficients with respect
to r + 1-st derivatives [25].

The technical importance of horizontalization is in the next two results.
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1.8 Lemma. Let α ∈ Ωq
r, with 0 ≤ q ≤ n, and s : X → Y be a section. Then

(jrs)
∗(α) = (jr+1s)

∗(h0,q(α))

1.9 Proposition. Let p ≥ 0. The kernel of hp,q coincides with p + 1-contact q-forms,
i.e.,

Cp+1Ωq = ker hp,q.

For a proof of both results, see, for example, [48].
The above decomposition also affects the exterior differential. Namely, the pull-back

of the differential can be split in two operators, one of which raises the contact degree
by one, and the other raises the horizontal degree by one. More precisely, in view of
proposition 1.6 and following [37], we introduce the maps

iH : Ωk
r → Ωk

r+1, iH = iDr+1 ◦ π∗
r+1,r, (6a)

iV : Ωk
r → Ωk

r+1, iV = iωr+1 ◦ π∗
r+1,r. (6b)

The maps iH and iV are two derivations along πr+1,r of degree 0. Together with the
exterior differential d they yield two derivations along πr+1,r of degree 1, the horizontal
and vertical differential

dH
def

= iH ◦ d − d ◦ iH : Ωk
r → Ωk

r+1,

dV
def

= iV ◦ d − d ◦ iV : Ωk
r → Ωk

r+1,

It can be proved (see [37]) that dH and dV fulfill the properties

d2
H = d2

V = 0, dH ◦ dV + dV ◦ dH = 0, (7a)

dH + dV = (πr+1
r )∗ ◦ d, (7b)

(jr+1s)
∗ ◦ dV = 0, d ◦ (jrs)

∗ = (jr+1s)
∗ ◦ dH . (7c)

The action of dH and dV on functions f : JrY → R and one–forms on JrY uniquely
characterizes dH and dV . We have the coordinate expressions

dHf = Dif dxi =

(

∂f

∂xi
+ yσ

I+i

∂f

∂yσ
I

)

dxi, (8a)

dHdxi = 0, dHdyσ
I = −dyσ

I+i ∧ dxi, dHωσ
I = −ωσ

I+i ∧ dxi, (8b)

dV f =
∂f

∂yσ
I

ωσ
I , (8c)

dV dxi = 0 , dV dyσ
I = dyσ

I+i ∧ dxi, dV ωσ
I = 0. (8d)

We note that dHdyσ
I = dHωσ

I .

1.10 Remark. A form α ∈ Ωn
r defines an action functional

A(s, U) def

=

∫

U

(jrs)
∗α, (9)
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where U ⊂ X is any oriented n-dimensional submanifold of X with regular boundary.
This is slightly more general than the usual notion, where a horizontal form of the
type λ : Jrπ → ∧nT ∗X is used (see, e.g., [37]). It follows that contact forms yield no
contribution to action-like functionals. The definition (9) is a first motivation for the
computations of the above section.

2 Finite order variational sequence

The first statement of a partial version of finite order variational sequence was in [3].
This finite order variational sequence stopped with a trivial projection to 0 just after
the space of finite order source forms (see below). The local exactness of this sequence
was proved, together with an original solution of the global inverse problem (despite
the fact that in order to do that the authors used infinite order jets). For more detailed
comments about that variational sequence see remark 2.8.

The first formulation of a (long) variational sequence on finite order jet spaces is
due to Krupka [23] (see [25] for the case n = 1). Below we will describe the main points
of the approach of [23], and compare it with other approaches.

In [23] a natural exact subsequence of the de Rham sequence on Jrπ is defined.
This subsequence is made by contact forms and their differentials. Then we define the
r–th order variational sequence to be the quotient of the de Rham sequence on Jrπ by
means of the above exact subsequence. Local and global results about the variational
sequence are proved using the fact that the above subsequence is globally exact and
using the abstract de Rham theorem.

Let us consider the sheaf of 1-contact forms C1Ω∗
r, and denote by (dCpΩk

r )̃ the sheaf
generated by the presheaf dCpΩk

r . We set

Θq
r

def

= C1Ωq
r + (dC1Ωq−1

r )̃ 0 ≤ q ≤ n,

Θp+n
r

def

= CpΩp+n
r + (dCpΩp+n−1

r )̃ 1 ≤ p ≤ dim Jrπ.
(10)

We observe that dC1Ωq−1
r ⊂ C1Ωq

r, so that the second summand of the above first
equation yields no contribution to C1Ωq

r. The sheaves Θp+n
r become trivial when p+n >

P , where the value of P is computed in [23] using Theorem 1.3. Moreover, we have
the following property (proved in [23]).

2.1 Lemma. Let 0 ≤ k ≤ dim Jrπ. Then the sheaves Θk
r are soft sheaves.

We have the following natural soft subsequence of the de Rham sequence on Jrπ

0 // Θ1
r

d // Θ2
r

d // . . . d // ΘP
r

d // 0 (11)

2.2 Definition. The sheaf sequence (11) is said to be the contact sequence.

2.3 Theorem. The contact sequence is an exact soft resolution of C1Ω1
r, hence the

cohomology of the associated cochain complex of sections on any open subset of Jrπ
vanishes.
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The above theorem is proved in [23] by first proving the local exactness of the contact
sequence and then using standard results from sheaf theory (for which an adequate
source is [50]).

Standard arguments of homological algebra prove that the following diagram is
commutative, and its rows and columns are exact.

0

��

0

��

0

��

0 // Θ1
r

d //

��

Θ2
r

d //

��

. . . d // ΘP
r

d //

��

0

0 // R // Ω0
r

d //

��@
@

@
@

@
@

@
Ω1

r
d //

��

Ω2
r

d //

��

. . . d // ΩP
r

d //

��

ΩP+1
r

d // · · · 0

Ω1
r/Θ

1
r

E1 //

��

Ω2
r/Θ

2
r

E2 //

��

. . . EP−1
// ΩP

r /ΘP
r

EI

<<yyyyyyyy

��
0 0 0

2.4 Definition. The above diagram is said to be the r-th order variational bicomplex
associated with the fibred manifold π : Y → X. We say the bottom row of the above
diagram to be the r-th order variational sequence associated with the fibred manifold
π : Y → X.

Due to theorem 2.3 the finite order variational sequence is an exact sheaf sequence
(this means that the sequence is locally exact, [50]). Hence both the de Rham sequence
and the variational sequence are acyclic resolutions of the constant sheaf R (‘acyclic’
means that the sequences are locally exact with the exception of the first sheaf R).
Next corollary follows by the abstract de Rham theorem.

2.5 Corollary. The cohomology of the variational sequence is naturally isomorphic to
the de Rham cohomology of Jrπ.

The above finite order diagram yields a variational sequence which can be proved to
be equal to the finite order variational sequence obtained from a finite order analogue
of the C-spectral sequence [49]. Moreover, as one could expect, for 0 ≤ s < r pull-back
via πr,s yields a natural inclusion of the s-th order variational bicomplex into the r-th
order variational bicomplex. More precisely, we have the following lemma (see [23]).

2.6 Lemma. Let 0 ≤ s < r. Then we have the injective sheaf morphism

χr
s :

(

Ωk
s/Θ

k
s

)

→
(

Ωk
r/Θ

k
r

)

, [α] 7→ [π∗
r,sα].

Hence, there is an inclusion of the s–th order variational bicomplex into the r–th order
variational bicomplex. The inclusion commutes with the operators of the variational
bicomplexes of orders s and r.
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Having already dealt with local and global properties of the r-th order variational
sequence, we are left with the problem of representing the quotient sheaves. This
problem has been independently solved by many authors in the infinite order case.
We recognize two different approaches to the problem: with differential forms (see for
example [41, 42]) and with differential operators [43, 44]. The restriction to finite order
jets of the former approach has been developed in [46] for p = 1, p = 2, and in [20, 21]
for all p. See [49] for a finite order differential operator approach. We will describe the
differential forms approach.

First of all, it is obvious that, for 0 ≤ q ≤ n, horizontalization provides such a
representation (see [23, 46]).

2.7 Proposition. Let 0 ≤ q ≤ n. Then we have the isomorphism

Hq : Ωq
r/Θ

q
r → Ω

0,q

r , [α] 7→ h0,q(α).

The quotient differential Eq reads through the above isomorphism as

Hq+1(Eq([α])) = Hq+1([dα]) = h0,q+1(dα) = dHh0,q(α).

The last equality of the above equation is the least obvious, and was first proved
in [3]. The proof depends on the fact that Diy

σ
I+j = yσ

I+j+i, and that the indexes i, j
are skew-symmetrized in the coefficients of dHh0,q(α) (see the coordinate expression of
h0,q).

2.8 Remark. In [3] the finite order variational sequence is developed starting from
the idea of finding a subsequence of forms whose order do not change under dH . The
authors prove that the above property characterizes the forms which are in the image
of h0,q (see also [2]). Conversely, in [23] the idea is to start with forms on finite order
jets, but the result is the same up to the degree q = n.

When the degree of forms is greater than n we are able to provide isomorphisms of
the quotient sheaves with other quotient sheaves made with proper subsheaves. This
helps both to the purpose of representing quotient sheaves and to the purpose of com-
paring the current approach with others, as we will see.

2.9 Proposition. Let p ≥ 1. The horizontalization hp,n induces the natural sheaf
isomorphism

Hp+n : Ωp+n
r /Θp+n

r → Ω
p,n

r /hp,n((dCpΩp+n−1
r )̃), [α] 7→ [hp,n(α)].

The quotient differential Ep+n reads through the above isomorphism as

Hp+1+n(Ep+n([α])) = Hp+1+n([dα]) = [hp+1,n(dα)].

For a proof, see [46, 48].
Following [2, 41, 42], let us introduce the map

Ip : CpΩp
r ∧Hn

r → CpΩp
2r ∧Hn

2r, Ip(α) =
1

p
ωσ ∧ (−1)|I|DI

(

i∂/∂uσ
I
α
)

(12)
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where DI stands for the iterated Lie derivative (LD1
)i1 · · · (LDn

)in . We say the map
Ip to be the interior Euler operator. It can be proved [2, 20, 42] that the following
properties of Ip holds

• Ip is a natural map, i.e., LX2r(Ip(α)) = Ip(LXr(α)), hence Ip is a global map;

• if α ∈ CpΩp
r ∧Hn

r then there exists a unique form β ∈ CpΩp
2r ∧Hn

2r, which is of the
type β = dHγ with γ ∈ CpΩp

2r−1 ∧Hn−1
2r−1, such that

α = I(α) + β. (13)

2.10 Remark. The above form γ is not uniquely defined, in general. For p = 1, if
the order of α is 1 it is easily proved that γ is uniquely defined; if the order of α is 2
then there exists a unique γ fulfilling a certain intrinsic property; if the order is 3 it is
proved in [16, 17] that no natural γ of the above type exists. However, suitable linear
connections on M and on the fibres of π : E → M can be used to determine a unique
γ. See [1, 2] for the case of p > 1.

It follows from the above theorem that if γ ∈ CpΩp
2r−1 ∧Hn−1

2r−1 then Ip(dHγ) = 0, so
that I2

p = Ip.

2.11 Theorem. We have the isomorphism

Ωp+n
r /Θp+n

r → Vp
r , [α] 7→ Ip(Hp+n([α])),

where Vp
r ⊂ CpΩp

2r+1 ∧ Hn
2r+1 is a suitable subspace (see [46] for a characterization for

p = 1, p = 2).

For a proof, see [46] (p = 1, p = 2) and [20, 21] for any p. The above theorem also
mean that, despite the fact that the denominator in proposition 2.9 is made by forms
which are locally total divergences, only global divergences really matter. We say the
elements of Vp to be the p-th degree variational forms; for p = 1 they are also known
as source forms.

The map Ip+1 allows us to represent the differentials Ep+n through forms:

Ip+1(Ep+n([α])) = Ip+1([dα]). (14)

From the coordinate expression of Ip it follows that En is just the Euler–Lagrange
operator and E1+n is just the Helmholtz operator. In fact, let ν def

= dx1∧· · ·∧dxn. Then,

if λ ∈ Ω
0,n

r , then λ = h0,n(α) = Lν, where L is a function with polynomial structure in
r + 1-st order derivatives as in (5). Now we can use (14) on α, but if α is not known
the computational problem of finding it can be technically difficult in principle. On
the other hand, we can use the commutativity of the inclusion of Lemma 2.6 with the
operators Ep+n and consider λ ∈ Ωn

r+1. Then h0,n(λ) = λ and En(λ) is the standard
Euler–Lagrange operator on the r+1-st order Lagrangian λ. A similar reasoning proves
that E1+n coincide with the Helmholtz operator.
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A different, computational approach to the problem of the representation of quo-
tients is presented in [13, 14].

A further approach to the problem of representation appeared in [30] for the case
n = 1. Here the concept of Lepagean equivalent is introduced in full generality (older
version of this concept can be found e.g., in [22], with references to older foundational
works). Namely, let α ∈ Ωp+n

r . Then a Lepage equivalent of [α] ∈ Ωp+n
r /Θp+n

r is a
differential form β ∈ Ωp+n

r such that

hp,n(β) = hp,n(α), hp+1,n(dβ) = Ip+1(h
p+1,n(dα)).

The most important example of a Lepagean equivalent is the Poincaré–Cartan form of
a Lagrangian (see, e.g., [22]).

3 Some related problems

In this section we will briefly describe what are the most recent results which involve
finite order variational sequences.

3.1 Variationally trivial Lagrangians.

A variationally trivial Lagrangian is an element [α] ∈ Ωn
r /Θ

n
r such that En([α]) = 0. If

[α] is a variationally trivial Lagrangian, then by the local exactness of the variational
sequence we have h0,n(α) = dH(h0,n−1(β)) with [β] ∈ Ωn−1

r /Θn−1
r a local form. A global

horizontal n − 1-form [β] ∈ Ωn−1
r /Θn−1

r such that [α] = dH [β] exists if and only if [α]
induces the zero cohomology class in the variational sequence. A refinement of this
result is the following theorem.

3.1 Theorem. Let λ : Jrπ → ∧nT ∗X induce a variationally trivial Lagrangian [λ].
Then, locally, λ = dHµ, where µ = h0,n−1(α) and α ∈ Ωn−1

r−1 .

In other words, λ = h0,n(dα), hence λ is the representative of a class En−1([α]) =
[dα] ∈ Ωn−1

r−1/Θr−1
n−1. This means that λ depends on r-th order derivatives through

hyperjacobians. This result has been proved in [3], [4] (here the proof is for the special
case when the Lagrangian does not depend on (xi)), [14, 29] (here the proof uses the
finite order variational sequence). See also [27] for another approach to the problem.
Of course, the result is sharp: the order cannot be further lowered.

3.2 Locally variational source forms.

A locally variational source form is an element [α] ∈ Ωn+1
r /Θn+1

r such that E1+n([α]) = 0.
If [α] is a locally variational source form, then by the local exactness of the variational
sequence [α] is the Euler–Lagrange expression of a local Lagrangian, i.e., [α] = En([β])
with [β] ∈ Ωn

r /Θn
r . A global Lagrangian [β] ∈ Ωn

r /Θ
n
r such that [α] = En([β]) exists if

and only if [α] = 0 ∈ Hn+1(Y ).

12



The previous result is sharp with respect to the order [23, 46]. However, it can be
very difficult to check that a source form is in the space Ωn+1

r /Θn+1
r . A result proved

in [2] is helpful in this sense. Let y(r) denote all derivative coordinates of order r on a jet
space. Let f ∈ C∞(J2rπ), and suppose that f(xi, y(0), . . . , y(r), ty(r+1), t2y(r+2), . . . , try(2r))
is a polynomial of degree less than or equal to r in y(s), with r + 1 ≤ s ≤ 2r. Then f
is said to be a weighted polynomial of degree r in the derivative coordinates of order
r + 1 ≤ s ≤ 2r.

3.2 Theorem. Let [∆] be a locally variational source form, with ∆: J2rπ → C∗
0 ∧

∧nT ∗X. Suppose that the coefficients of ∆ are weighted polynomials of degree less than
or equal to r. Then ∆ = E(λ), where λ : Jrπ → ∧nT ∗X.

Again, the result is sharp with respect to the order of the jet space where the
Lagrangian is defined. The above theorem is complemented in [2] by a rather complex
algorithm for building the lowest order Lagrangian. This algorithm is an improvement
of the well-known Volterra Lagrangian

L =

∫ 1

0

yσ∆σ(xi, tyτ
I )dt

for a locally variational source form ∆. In fact, the above Lagrangian is defined on
the same jet space as ∆. The finite order variational sequence yields another method
for computing lower order Lagrangians, provided we know that ∆ = [α] ∈ Ωn+1

r /Θn+1
r .

Namely, we apply the contact homotopy operator to the closed form dα ∈ Θn+2
r , finding

β ∈ Θn+1
r such that dβ = dα. Using the (standard) homotopy operator we find γ ∈ Ωn

r

such that dγ = β − α, and λ def

= h0,n(γ) is the required Lagrangian. Of course, the most
difficult point is to invert the representation of quotients in the variational sequence,
i.e., to find a least order α such that ∆ = [α].

The above theorem does not exhaust the finite order inverse problem. A locally
variational source form ∆ on J2rπ seems to have a definite form of the coefficients with
respect to its derivatives of order s, with r + 1 ≤ s ≤ 2r. It is an open problem to
determine such a structure, e.g. prove that such forms always lie in Ωn+1

s /Θn+1
s for a

minimal value of s; a least order Lagrangian would follow from the local exactness of
the variational sequence.

Finally, we recall that recently some geometric results on variational first-order
partial differential equations have been obtained in [15]. Such equations arise in multi-
symplectic field theories.

3.3 Contact elements

Let Y be an n + m-dimensional manifold, and x ∈ Y . We say that two n-dimensional
submanifolds L1, L2 such that x ∈ L1 ∩ L2 are r-equivalent if they have a contact of
order r at x. It is possible to choose a chart of Y at x of the form (xi, yσ), 1 ≤ i ≤ n,
1 ≤ i ≤ m, where both L1 and L2 can be expressed as graphs yσ = fσ

1 (xi), yσ = fσ
2 (xi).

Then the contact condition is the equality of the derivatives of the above functions

13



f1, f2 at x up to the order r. This is an equivalence relation whose quotient set is
Jr(Y, n), the manifold of r-th order n-dimensional contact elements. This construction
was first formalized in [10], and is also known as r-th order jet space of n-dimensional
submanifolds of Y [45] or extended jet bundle [34]). If Y is endowed with a fibring π,
then Jrπ is the open and dense subspace of Jr(Y, n) which is made by submanifolds
which are transverse to the fibring at a point (which, of course, can be locally identified
with the images of sections, hence with local sections themselves).

Of course, manifolds of contact elements have a contact distribution, hence a varia-
tional sequence can be formulated through the C-spectral sequence [7, 43, 44]. Manifolds
of contact elements can also be seen as jets of parametrizations of submanifolds (i.e.,
jets of local n-dimensional immersions) up to the action of the reparametrization group
[18]. In this setting another approach to the variational sequence is [38]. In [33] the
finite-order C-spectral sequence on the manifold of contact elements is computed. Re-
search based on Krupka’s approach on a variational sequence on finite order contact
elements is in progress [31].

Another interesting research topic is the development of finite order variational
structures on differential equations, i.e. submanifolds of jet spaces. This would possibly
lead to a classification of their conservation laws of a certain order [35].

3.4 Variational sequence and symmetries

The Lie derivative of variational forms is interesting for the determination of symmetries
of Lagrangians and source forms. However, the result of a Lie derivative with respect
to a prolonged vector field is a form which, in general, contains dH-exact terms. For
this reason it is natural to use a new operator, the variational Lie derivative, which
is defined up to dH-exact terms. Such a formula first appeared in [45] (‘infinitesimal
Stokes’formula’) in the infinite order formalism. The finite order case has been dealt
with in [11, 28]. See also [6] for symmetries of source forms which are locally but not
globally variational. This topic has clear connections with Noether’s theorem, for which
we invite the reader to consult the above literature.

3.5 Further topics

We already mentioned that other approaches to variational sequences exist in literature,
mostly on infinite order jets.

It can be proved that there exists an infinite order analogue of Krupka’s r-th order
variational bicomplex [47]. This is defined in view of Lemma 2.6 via a direct limit of
the injective family of r-th order variational bicomplexes. Nonetheless the direct limit
infinite order bicomplex will be a bicomplex of presheaves, because gluing forms defined
on jets of increasing order provides ‘forms’ which are only locally of finite order.

The C-spectral sequence on jets of fibrings yields an infinite order variational se-
quence [7, 43, 44]. See [26, 48] for a comparison with Krupka’s approach and [49] for
some finite order C-spectral sequence computations.
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In [36] the relationship between a part of the finite order variational sequence and
the Spencer sequence are stressed. This relationship was already explored in [43, 44] in
the case of infinite order jet spaces.
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[16] I. Kolář: A geometrical version of the higher order Hamilton formalism in fibred
manifolds, J. Geom. Phys., 1, n. 2 (1984), 127–137.
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[30] D. Krupka, J. Šedenková: Variational sequences and Lepage forms, in: Dif-
ferential Geometry and Its Applications, Proc. Conf., Edited by J. Bures, O.
Kowalski, D. Krupka, J. Slovák, Prague, August 2004; Charles University in
Prague, Czech Republic, 2005, 617–627.

[31] D. Krupka, Z. Urban: Proceedings of the 10th International Conference on
Differential Geometry and Its Applications, Olomouc (Czech Rep.) 2007.

[32] L. Mangiarotti, M. Modugno: Fibered Spaces, Jet Spaces and Connections
for Field Theories, in Proc. of the Int. Meet. on Geometry and Physics, Pitagora
Editrice, Bologna, 1983, 135–165.

[33] G. Manno, R. Vitolo: Variational sequences on finite order jets of sub-
manifolds, Proc. of the VIII Conf. on Diff. Geom. and Appl., Opava 2001,
Czech Republic, http://www.emis.de/proceedings; see also the longer preprint
arXiv:math.DG/0602127.

[34] P. J. Olver: Applications of Lie Groups to Differential Equations, GTM 107,
2nd edition, Springer 1993.

[35] P.J. Olver: private communication (2007).

[36] J. F. Pommaret: Spencer sequence and variational sequence, Acta Appl. Math.
41 (1995), 285–296.

[37] D. J. Saunders: The Geometry of Jet Bundles, Cambridge Univ. Press, 1989.

[38] D. J. Saunders: Homogeneous variational complexes and bicomplexes, arXiv:
math.DG/0512383.

[39] F. Takens: A global version of the inverse problem of the calculus of variations,
J. Diff. Geom., 14 (1979), 543–562.
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