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via per Arnesano, 73100 Italy

email: Raffaele.Vitolo@unile.it

Abstract

We consider two geometric formulations of Lagrangian formalism on fibred
manifolds: Krupka’s theory of finite order variational sequences, and Vinogradov’s
infinite order variational sequence associated with the C–spectral sequence. On
one hand, we show that the direct limit of Krupka’s variational bicomplex is a new
infinite order variational bicomplex which yields a new infinite order variational
sequence. On the other hand, by means of Vinogradov’s C–spectral sequence, we
provide a new finite order variational sequence whose direct limit turns out to
be the Vinogradov’s infinite order variational sequence. Finally, we provide an
equivalence of the two finite order and infinite order variational sequences up to
the space of Euler–Lagrange morphisms.
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2 On formulations of Lagrangian formalism

Introduction

The theory of variational bicomplexes can be regarded as the natural geometrical set-
ting for the calculus of variations [1, 2, 10, 11, 15, 19, 20, 21, 22, 23, 24]. The geometric
objects which appear in the calculus of variations find a place on the vertices of a varia-
tional bicomplex, and are related by the morphisms of the bicomplex. Such morphisms
are closely related to the differential of forms. Moreover, the global inverse problem is
solved in this context.

The purpose of this paper is to compare Krupka’s finite order formulation [10] to
the infinite order formulation by Vinogradov [23, 24].

Krupka’s finite order variational sequence is produced when one quotients the de
Rham sequence on a finite order jet space by means of an intrinsically defined sub-
sequence. So, the morphisms of this bicomplex are either the differential of forms, or
inclusions, or quotient morphisms. A finite order formulation of variational bicomplexes
can help in keeping trace of the order of the geometric objects involved at each vertex
of the bicomplex. But this yields several technical difficulties. For an intrinsic analysis
of this theory, based on the structure form on jets [13] and the first variation formula
[9], see [28].

The formulation of Vinogradov is carried on by means of the C–spectral sequence.
This is a very general framework, by which one can formulate the variational sequences
also in the case of the spaces of infinite jets of m dimensional submanifolds of a given
m+n dimensional manifold. Moreover, C–spectral sequences play an important role in
the theory of ordinary and partial differential equations, and in quantum mechanics and
field theory. Here, we consider the variational sequence associated with the C–spectral
sequence of the infinite order de Rham exact sequence. Roughly speaking, the infinite
order de Rham exact sequence is made by forms on jet spaces of any order. This is a
wiewpoint that allows to skip several hard technical difficulties. In fact, one has not
to worry about the order of the objects or the operators. The relationship between
Tulczyjew’s and Vinogradov’s formulations has been analysed in [4].

Here, we give a new finite order formulation of variational sequences using the
C–spectral sequence on finite order jet spaces. The direct limit of this finite order
C–spectral sequence turns out to be Vinogradov’s infinite order C–spectral sequence.

Then, we evaluate the direct limit of Krupka’s variational bicomplex, finding a new
infinite order variational sequence.

Finally, we do a comparison of both finite and infinite order variational sequences
finding that they are isomorphic up to the space of Euler–Lagrange morphisms.

So, the logical scheme of this paper is summarised by the following diagram

New infinite–order
formulation

≈-
Vinogradov’s infinite–order

formulation

Krupka’s finite–order
formulation

lim
→

6

≈ -
New finite–order

formulation

lim
→

6
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A final discussion has to be devoted to the language used in the paper. While
Krupka’s approach is carried on by means of the language of sheaves (see, for example,
[29]), Vinogradov’s approach uses an algebraic language (see [8] and references therein).
Here, in order to compare the above approaches with a unique language, we found easier
to left Krupka’s approach unchanged and to use a presheaf approach for the C–spectral
sequence. In fact, the C–spectral sequence is defined in the category of differential
groups (Appendix B), but, in our case, it can be carried on easily to presheaves. Of
course, the algebraic language is a very powerful and natural tool, and in the next
future much more could be said about finite order C–spectral sequences, for example in
the case of jets of submanifolds.

We observe that a basic introduction to spectral sequences is provided in Appendix
B, in order to make the paper self–contained.

We end the introduction with some mathematical conventions. In this paper, mani-
folds are connected and C∞, and maps between manifolds are C∞. Morphisms of fibred
manifolds (and hence bundles) are morphisms over the identity of the base manifold,
unless otherwise specified.

We make use of definitions and results on presheaves and sheaves from [29]. In par-
ticular, we are concerned only with (pre)sheaves of IR–vector spaces, hence ‘(pre)sheaf
morphism’ stands for morphism of (pre)sheaves of IR–vector spaces. We denote by SU

the set of sections of a (pre)sheaf S over a topological space X defined on the open
subset U ⊂ X. We recall that a sequence of (pre)sheaves over X is said to be exact if it
is locally exact (see [29] for a more precise definition). If A, B are two sub(pre)sheaves
of a sheaf S, then the wedge product A∧B is defined to be the sub(pre)sheaf of sections

of
2
∧S generated by wedge products of sections of A and B.

We recall that a sheaf S over X is said to be soft if each section defined on a closed
subset C ⊂ X can be extended to a section defined on any open subset U such that
C ⊂ U . Moreover, S is said to be fine if it admits a partition of unity. A fine sheaf is
also a soft sheaf. The sheaf of sections of a vector bundle is a fine sheaf, hence a soft
sheaf.

Let {Sn}n∈N be a family of (pre)sheaves and {ιmn : Sn → Sm}n,m∈N,n≤m be a family
of injective (pre)sheaf morphisms such that, for all n,m, p ∈ N, n ≤ m ≤ p, we have
ιpm ◦ ιmn = ιpn and ιnn = idSn

. We say {Sn} to be an injective system. We define the direct
limit of the injective system to be the (pre)sheaf

S :=
⊔

n∈N

Sn

/
∼ ,

where ∼ is the equivalence relation defined as follows. For each s ∈ Sn and s′ ∈ Sn′ , if
n ≤ n′, then s ∼ s′ if and only if ιn

′

n (s) = s′.

Acknowledgements. I would like to thank I. Kolàř, D. Krupka, M. Modugno, J.
Štefanek and A. Vinogradov for stimulating discussions.

Diagrams have been drawn by P. Taylor’s diagrams macro package.
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1 Jet spaces

In this section we recall some facts on jet spaces. We start with the definition of jet
space, then we introduce the contact maps. We study the natural sheaves of forms on
jet spaces which arise from the fibring and the contact maps. Finally, we introduce the
horizontal and vertical differential of forms on jet spaces.

Jet spaces

Our framework is a fibred manifold

π : Y → X ,

with dim X = n and dim Y = n+m.
We deal with the tangent bundle TY → Y , the tangent prolongation Tπ : TY →

TX and the vertical bundle V Y := kerTπ → Y .
Moreover, for 0 ≤ r, we are concerned with the r–th jet space JrY ; in particular,

we set J0Y ≡ Y . We recall the natural fibrings

πr
s : JrY → JsY , πr : JrY → X ,

and the affine bundle

πr
r−1 : JrY → Jr−1Y

associated with the vector bundle

⊙r T ∗
X ⊗

Jr−1Y

V Y → Jr−1Y ,

for 0 ≤ s ≤ r. A detailed account of the theory of jets can be found in [13, 11, 17].

Charts on Y adapted to the fibring are denoted by (xλ, yi). Greek indices λ, µ, . . .
run from 1 to n and label base coordinates, Latin indices i, j, . . . run from 1 to m and
label fibre coordinates, unles otherwise specified. We denote by (∂λ, ∂i) and (dλ, di),
respectively, the local bases of vector fields and 1–forms on Y induced by an adapted
chart.

We denote multi–indices of dimension n by underlined latin letters such as p =
(p1, . . . , pn), with 0 ≤ p1, . . . , pn; by identifying the index λ with a multi–index according
to

λ ≃ (p1, . . . , pi, . . . , pn) ≡ (0, . . . , 1, . . . , 0) ,

we can write

p+ λ = (p1, . . . , pi + 1, . . . , pn) .

We also set |p| := p1 + · · · + pn and p! := p1! . . . pn!.
The charts induced on JrY are denoted by (x0, yi

p), with 0 ≤ |p| ≤ r; in particular,

if |p| = 0, then we set yi
0 ≡ yi. The local vector fields and forms of JrY induced by the

fibre coordinates are denoted by (∂
p

i ) and (di
p), 0 ≤ |p| ≤ r, 1 ≤ i ≤ m, respectively.
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Contact maps

A fundamental role is played in this paper by the “contact maps” on jet spaces (see [13]).
Namely, for 1 ≤ r, we consider the natural injective fibred morphism over JrY → Jr−1Y

dr : JrY ×
X

TX → TJr−1Y ,

and the complementary surjective fibred morphism

ϑr : JrY ×
Jr−1Y

TJr−1Y → V Jr−1Y ,

whose coordinate expression are

dr = dλ⊗drλ = dλ⊗(∂λ + yj
p+λ∂

p

j ) , 0 ≤ |p| ≤ r − 1,

ϑr = ϑj
p⊗∂

p

j = (dj
p − yj

p+λd
λ)⊗∂

p

j , 0 ≤ |p| ≤ r − 1 .

We stress that

dr yϑr = ϑr ydr = 0(1)

(ϑr)
2 = ϑr (dr)

2 = dr(2)

The transpose of the map ϑr is the injective fibred morphism over JrY → Jr−1Y

ϑ∗
r : JrY ×

Jr−1Y

V ∗Jr−1Y → T ∗Jr−1Y .

We have the remarkable vector subbundle

imϑ∗
r ⊂ JrY ×

Jr−1Y

T ∗Jr−1Y ⊂ T ∗JrY ,(3)

and, for 0 ≤ t ≤ s ≤ r, the fibred inclusions

JrY ×
JtY

imϑ∗
t ⊂ JrY ×

JsY

imϑ∗
s ⊂ imϑ∗

r .(4)

The above vector subbundle imϑ∗
r yields the splitting [13]

JrY ×
Jr−1Y

T ∗Jr−1Y =

(
JrY ×

Jr−1Y

T ∗
X

)
⊕ imϑ∗

r .(5)

Distinguished sheaves of forms

We are concerned with some distinguished sheaves of forms on jet spaces.

Remark 1.1. The manifold Y is a differentiable retract of JrY , hence the de Rham
cohomologies of Y and JrY are isomorphic. Therefore, we reduce (pre)sheaves on JrY

to sheaves on Y by considering for each (pre)sheaf S on JrY the (pre)sheaf induced by
S by restricting to the tube topology on JrY , i.e. , the topology generated by open sets
of the kind (πr

0)
−1 (U), with U ⊂ Y open in Y . So, from now on, the (pre)sheaves of

forms on JrY and the related sub(pre)sheaves will be considered as (pre)sheaves over
the topological space Y of the above kind.
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Let 0 ≤ k.

1. First of all, for 0 ≤ r, we consider the standard sheaf
k

Λr of k–forms on JrY

α : JrY →
k
∧T ∗JrY .

2. Then, for 0 ≤ s ≤ r, we consider the sheaves
k

H(r,s) and
k

Hr of horizontal forms ,
i.e. of local fibred morphisms over JrY → JsY and JrY → X of the type

α : JrY →
k
∧T ∗JsY and β : JrY →

k
∧T ∗

X ,

respectively. In coordinates, if 0 < k ≤ n, then

α = α
p
1
...p

h

i1...ih λh+1...λk
di1

p
1

∧ . . . ∧ dih
p

h

∧ dλh+1 ∧ . . . ∧ dλk ,

β = βλ1...λk
dλ1 ∧ . . . ∧ dλk ;

if k > n, then

α = α
p
1
...p

k−n+l

i1...ik−n+l λl+1...λn
di1

p
1

∧ . . . ∧ dik−n+l
p

k−n+l

∧ dλl+1 ∧ . . . ∧ dλn ,

Here, the coordinate functions are sections of
0

Λr, and the indices’range is 0 ≤
|p

j
| ≤ s, 0 ≤ h ≤ k and 0 ≤ l ≤ n. We remark that, in the coordinate expression

of α, the indices λj are suppressed if h = k or l = n, and the indices
p

j

ij
are

suppressed if h = 0.

Clearly
k

H(r,r) =
k

Λr and
k

Hr = 0 for k > n.

If 0 ≤ q ≤ r and 0 ≤ t ≤ s ≤ r, then pull–back by πr
q yields the sheaf inclusions

k

Hq ≃ πr
q
∗

k

Hq ⊂
k

Hr ⊂
k

H(r,t) ⊂
k

H(r,s) ⊂
k

Λr ,

k

Λq ≃ πr
q
∗

k

Λq ⊂
k

H(r,q) ⊂
k

Λr .

The above inclusions are proper inclusions if t < s < r and q < r. Indeed, not all
sections of the pull–back of a bundle (like JrY ×

JsY

T ∗JsY ) are the pull–back of

some section of the bundle itself. In fact, we deal with two different operations:
pull–back of bundles and pull–back of sections (forms).

3. For 0 ≤ s < r, we consider the subsheaf
k

C(r,s) ⊂
k

H(r,s) of contact forms, i.e. of
local fibred morphisms over JrY → JsY of the type

α : JrY →
k
∧imϑ∗

s+1 ⊂
k
∧T ∗JsY .
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Due to the injectivity of ϑ∗
s+1, the subsheaf

k

C(r,s) turns out to be the sheaf of

local fibred morphisms α ∈
k

H(r,s) which factorise as α =
k
∧ϑ∗

s+1◦α̃, through the
composition

JrY
α̃- Js+1Y ×

JsY

k
∧V ∗JsY

k
∧ϑs+1-

k
∧T ∗JsY .

Thus, α ∈
k

C(r,s) if and only if its coordinate expression is of the type

α = α
p
1
...p

k

i1...ik
ϑi1

p
1

∧ . . . ∧ ϑik
p

k

0 ≤ |p
1
|, . . . , |p

k
| ≤ s ,

with α
p
1
...p

k

i1...ik
∈

0

Λr.

If r ≤ r′, s ≤ s′ and 0 ≤ s < r, 0 ≤ s′ < r′ then we have the inclusions (see (3)
and (4))

k

C(r,s) ⊂
k

C(r′,s′) .

4. Furthermore, we consider the subsheaf
k

HP
r ⊂

k

Hr of local fibred morphisms α ∈
k

Hr

such that α is a polynomial fibred morphism over Jr−1Y → X of degree k. Thus,

in coordinates, α ∈
k

HP
r if and only if αλ1,...,λk

: JrY → IR is a polynomial map of
degree k with respect to the coordinates yi

p, with |p| = r.

5. Finally, we consider the subsheaf
k

Cr ⊂
k

C(r+1,r) of local fibred morphisms α ∈
k

C(r+1,r) such that α̃ projects down on JrY . Thus, in coordinates, α ∈
k

Cr if and

only if α
p
1
...p

k

i1...ik
∈

0

Λr.

Main splitting

The maps dr and ϑr induce two important derivations of degree 0 (see [17]), namely
the interior products by dr and ϑr

ih ≡ idr+1
:

k

Λr →
k

Λr+1 , iv ≡ iϑr+1
:

k

Λr →
k

Λr+1 ,

which make sense by taking into account the natural inclusions JrY ×
X

T ∗
X ⊂ T ∗JrY

and V JrY ⊂ TJrY .
The fibred splitting (5) yields a fundamental sheaf splitting.

Lemma 1.1. We have the splitting

1

H(r+1,r) =
1

Hr+1 ⊕
1

C(r+1,r) ,
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where the projection on the first factor and on the second factor are given, respectively,
by

H :
1

H(r+1,r) →
1

Hr+1 : α 7→ ihα , V :
1

H(r+1,r) →
1

C(r+1,r) : α 7→ ivα .

If α ∈
1

H(r+1,r) has the coordinate expression α = αλd
λ + α

p

i d
i
p (0 ≤ p ≤ r), then

H(α) = (αλ + yi
pα

p

i ) d
λ , V (α) = α

p

iϑ
i
p .

Proposition 1.1. The above splitting of
1

H(r+1,r) induces the splitting

k

H(r+1,r) =
k⊕

l=0

k−l

C (r+1,r) ∧
l

Hr+1

(see Appendix A).

We recall that, in the above splitting, direct summands with l > n vanish.
We set H to be the projection of the above splitting on the summand with the

highest degree of the horizontal factor.

Proposition 1.2. If k ≤ n, then we have

H :
k

H(r+1,r) →
k

Hr+1 : α 7→
1

k!
�

k
dr+1(α) ;

if k > n, then we have

H :
k

H(r+1,r) →
k−n

C (r+1,r) ∧
n

Hr+1 : α 7→
1

(k − n)!n!

(
�

k−nϑr+1�
n
dr+1

)
(α) .

Proof. See Appendix A. QED

We set also

V := Id−H

to be the projection complementary to H.

Remark 1.2. If k ≤ n, then we have the coordinate expression

H(α) = yi1
p
1
+λ1

. . . yih
p

h
+λh

α
p
1
...p

h

i1...ih λh+1...λk
dλ1 ∧ . . . ∧ dλk ,

with 0 ≤ h ≤ k. If k > n, then we have

H(α) =
∑

yj1
q
1
+λ1

. . . yjl

q
l
+λl
α

p
1

b...p
k−n+l

q
1
...q

l

i1 b... ik−n+l j1...jl
λl+1...λn

ϑi1
p
1

∧ .̂ . . ∧ ϑik−n+l
p

k−n+l

∧ dλ1 ∧ . . . ∧ dλn ,

where 0 ≤ l ≤ n and the sum is over the subsets

{j1
q
1

. . . jl
q

l

} ⊂ {i1
p
1

. . . ik−n+l
p

k−n+l

} ,

and .̂ . . stands for suppressed indexes (and corresponding contact forms) belonging to
one of the above subsets.
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Now, we apply the conclusion of remark 8.1 of the Appendix A to the subsheaf
k

Λr ⊂
k

H(r+1,r). To this aim, we want to find the image of
k

Λr under the projections of
the above splitting.

We denote the restrictions of H,V to
k

Λr by h, v. Next theorem is devoted to a

characterisation of the image of
k

Λr under h.

Theorem 1.1. Let 0 < k ≤ n, and denote

k

Hh
r+1 := h(

k

Λr) .

Then, we have the inclusion
k

Hh
r+1 ⊂

k

HP
r+1.

Moreover, the sheaf
k

Hh
r+1 admits the following characterisation: a section α ∈

k

HP
r+1

is a section of the subsheaf
k

Hh
r+1 if and only if there exists a section β ∈

k

Λr such that

(jrs)
∗β = (jr+1s)

∗α

for each section s : X → Y .

Proof. If s : X → Y is a section, then the following identities

(jrs)
∗β = (jr+1s)

∗h(β) , (jr+1s)
∗v(β) = 0 ,

yield

α = h(β) ⇔ (jrs)
∗β = (jr+1s)

∗α

for all α ∈
k

HP
r+1 and β ∈

k

Λr. QED

Remark 1.3. It comes from the above Theorem that not any section of
k

HP
r+1 is a

section of
k

Hh
r+1; indeed, a section of

k

HP
r+1 in general contains ‘too many monomials’

with respect to a section of
k

Hh
r+1. This can be seen by means of the following example.

Consider a one–form β ∈
1

Λ0. Then we have the coordinate expressions

β = βλd
λ + βid

i , h(β) = (βλ + yi
λβi)d

λ .

If α ∈
1

HP
1 , then we have the coordinate expression

α = (αλ + yj
µα

µ
j λ)d

λ .

It is evident that, in general, there does not exists β ∈
1

Λr such that h(β) = α.
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Corollary 1.1. Let dim X = 1. Then we have

1

Hh
r+1 =

1

HP
r+1 .

Proof. From the above coordinate expressions. See also [26]. QED

Lemma 1.2. The sheaf morphisms H,V restrict on the sheaf
k

Λr to the surjective sheaf
morphisms

h :
1

Λr →
1

Hh
r+1 , v :

1

Λr →
1

Cr .

Proof. The restriction of H has already been studied. As for the restriction of V ,

it is easy to see by means of a partition of the unity that it is surjective on
1

Cr. QED

Theorem 1.2. The splitting of proposition 1.1 yields the inclusion

k

Λr ⊂
k⊕

l=0

k−l

C r ∧
l

Hh
r+1 ,

and the splitting projections restrict to surjective maps.

Proof. In fact, for any l ≤ k the restriction of the projection

k

H(r+1,r) →
k−l

C (r+1,r) ∧
l

Hr+1

of the splitting of proposition 1.1 to the sheaf
k

Λr takes the form

k

Λr →
k−l

C r ∧
l

Hh
r+1 ⊂

k−l

C (r+1,r) ∧
l

Hr+1 .

The above inclusion can be tested in coordinates. For the sake of simplicity, let us

consider a global section α ∈
k−l

C r ∧
l

Hh
r+1 where 0 ≤ l ≤ n. We have the coordinate

expression

α = yj1
q
1
+λ1

. . . yjh

q
h
+λh

α
p
1
...p

k−l
q
1
...q

h

i1 ... ik−l j1...jhλh+1...λl

ϑi1
p
1

∧ . . . ∧ ϑik−l
p

k−l

∧ dλ1 ∧ . . . ∧ dλl ,

where 0 ≤ |p
i
|, |q

i
| ≤ r and 0 ≤ h ≤ n. If {ψi} is a partition of the unity on

0

Λr

subordinate to a coordinate atlas, let

α̃i := ψi α̃
s1...sr

t1...tr λr+1...λk
dt1

s1
∧ . . . ∧ dtr

p
r

∧ dλr+1 ∧ . . . ∧ dλk ,

where the set of pairs of indices {t1
s1
. . . tr

sr
} is a permutation of the set of pairs of indices

{i1
p
1

. . .
ik−l
p

k−l

j1
q
1

. . . jl
q

l

}. Then
∑

i α̃i is a global section of
k

Λr whose projection on
k−l

C r ∧
l

Hh
r+1

is α.
The proof is analogous for k > n. QED

We remark that, in general, the above inclusion is a proper inclusion: in general, a

sum of elements of the direct summands is not an element of
k

Λr.
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Corollary 1.2. The sheaf morphism H restricts on the sheaf
k

Λr to the surjective sheaf
morphisms

h :
k

Λr →
k

Hh
r+1 k ≤ n , h :

k

Λr →
k−n

C r ∧
n

Hh
r+1 k > n .

Horizontal and vertical differential

The derivations ih, iv, and the exterior differential d yield two derivations of degree one
(see [17]). Namely, we define the horizontal and vertical differential to be the sheaf
morphisms

dh := ih◦d− d◦ih :
k

Λr →
k

Λr+1 , dv := iv◦d− d◦iv :
k

Λr →
k

Λr+1 ,

It can be proved (see [17]) that dh and dv fulfill the properties

d2
h = d2

v = 0 , dh◦dv + dv◦dh = 0 ,

dh + dv = (πr+1
r )∗◦d ,

(jr+1s)
∗◦dv = 0 , d◦(jrs)

∗ = (jr+1s)
∗◦dh .

The action of dh and dv on functions f : JrY → IR and one–forms on JrY uniquely
characterises dh and dv. We have the coordinate expressions

dhf = (dr+1)λ.fd
λ = (∂λf + yi

p+λ∂
p

i f)dλ ,

dhd
λ = 0 , dhd

i
p = −di

p+λ ∧ d
λ , dhϑ

i
p = −ϑi

p+λ ∧ d
λ ,

dvf = ∂
p

i fϑ
i
p ,

dvd
λ = 0 , dvd

i
p = di

p+λ ∧ d
λ , dvϑ

i
p = 0 .

We note that

−di
p+λ ∧ d

λ = −ϑi
p+λ ∧ d

λ + yi
p+λ+µd

µ ∧ dλ = −ϑi
p+λ ∧ d

λ .

Finally, next Proposition analyses the relationship of dh and dv with the splitting of
Proposition 1.1.

Proposition 1.3. We have

dh

(
k

Hr

)
⊂

k+1

H r+1 , dv

(
k

Hr

)
⊂

1

Cr ∧
k

Hr ,

dh

(
k

C(r,r−1) ∧
h

Hr

)
⊂

k

C(r+1,r) ∧
h+1

H r+1 , dh

(
k

C(r,r−1) ∧
n

Hr

)
= {0} ,

dv

(
k

C(r,r−1)

)
⊂

k+1

C r , dv

(
k

Cr

)
⊂

k+1

C r ,

Proof. From the action of dh, dv on functions and local coordinate bases of forms.
QED
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Direct limit

The sheaf injections πr
s (r ≥ s) provide several inclusions between the sheaves of forms

previously introduced. This yields several injective systems, whose direct limit is studied
here.

We define the presheaves on Y

k

Λ := lim
→

k

Λr ,
(k,h)

Λ := lim
→

(k,h)

Λ (r+1,r) .

By simple counterexamples, it can be proved that the above presheaves are not sheaves
in general, because the gluing axiom fails to be true.

Remark 1.4. For any equivalence class [α] ∈
k

Λ there exists a distinguished represen-

tative β ∈
k

Λr whose order r is minimal. The same holds for
(0,k)

Λ and
(k,0)

Λ . Accordingly,

we shall often indicate by β ∈
k

Λ (without brackets) such a minimal section.

Lemma 1.3. We have lim
→

k

Λ(r+1,r) = lim
→

k

Λr ≡
k

Λ.

Proof. In fact, we have the inclusions
k

Λr ⊂
k

Λ(r+1,r) ⊂
k

Λr+1 QED

Theorem 1.3. We have the natural splitting

k

Λ =
k⊕

l=0

(k−l,l)

Λ .

Proof. It comes from the above lemma and the splitting of proposition 1.1. QED

Remark 1.5. The above splitting represents one of the major differencies between the
finite order and the infinite order case. As we shall see, in the infinite order formulations

one has to deal with quotients of
k

Λ by sheaves of contact forms. The above splitting
allows us to identify such quotients with ‘more concrete’ spaces (see proposition 4.2).
The situation is much more complicated in the finite order case for the lack of such a

splitting. In fact, the inclusion
k

Λr ⊂
k

Λ(r+1,r) is a proper inclusion, and we are in the bad
situation described in remark 8.1. Nevertheless, by means of the splitting of proposition
1.1, we are able to recover in the finite order case almost all features of infinite order
formulations, but in a much more difficult way (see [28]).

Proposition 1.4. The sheaf morphisms d, dh, dv,
k

h, admit direct limits. Namely, such
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direct limits turn out to be the presheaf morphisms

d :
k

Λ →
k+1

Λ : [α] 7→ [dα] ,

dh :
k

Λ →
k+1

Λ : [α] 7→ [dhα] , dv :
k

Λ →
k+1

Λ : [α] 7→ [dvα] ,

k

h :
k

Λ(r+1,r) →






(0,n)

Λ r+1 : [α] 7→ [
k

h] if k ≤ n
(k−n,n)

Λ r+1 : [α] 7→ [
k

h] if k > n ;

Note that the map
k

h of the above proposition turns out to be the projection of the
splitting of theorem 1.3 on the factor with the highest horizontal degree; in other words,
the direct limit of the projection is the projection of the splitting of the direct limit.

We observe that we did not indicate the degree of d, dh and dv. This is both for a
matter of ‘tradition’ and not to make too heavy the notation.

Finally, next proposition analyses the relationship of dh and dv with the splitting of
the above theorem.

Proposition 1.5. We have

dh(
(0,k)

Λ ) ⊂
(0,k+1)

Λ , dv(
(0,k)

Λ ) ⊂
(1,k)

Λ ,

dh(
(k,0)

Λ ) ⊂
(k,1)

Λ , dv(
(k,0)

Λ ) ⊂
(k+1,0)

Λ .

Proof. From the action of dh, dv on functions and local coordinate bases of forms.
QED

2 Finite order variational sequence

In this section, we recall the theory of variational sequences on finite order jet bundles
[10]. We give a concise summary of the theory using our notation.

We consider the de Rham exact sheaf sequence on JrY

0 - IR -
0

Λr
d -

1

Λr
d - . . .

d -
J

Λr
d - 0,

where J := dim JrY . We are able to provide several natural subsequences of the de
Rham sequence. For example, natural subsequences of the de Rham sequence arise

by considering the ideals generated in
k

Λr by its natural subsheaves
1

H(r,s),
1

C(r,s), . . .
Not all natural subsequences of the de Rham sequence turn out to be exact. Here, we
introduce an exact natural subsequence of the de Rham sequence, which is of particular
importance in the variational calculus, although being defined independently (see [10,
26]).
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We introduce a new subsheaf of
k

Λr. Namely, we set

C
k

Λr = {α ∈
k

Λr | (jrs)
∗α = 0 for every section s : X → Y } .

The above subsheaf C
n

Λr is made by forms which does not give contribution to
action–like functionals. [10, 17, 27].

Lemma 2.1. We have

C
k

Λr = kerh if 0 ≤ k ≤ n , C
k

Λr =
k

Λr if k > n .

Proof. Let α ∈
k

Λr. Then, for any section s : X → Y we have

(jrs)
∗α = (jr+1s)

∗h(α) ,

and α ∈ kerh implies α ∈ C
k

Λr. Conversely, suppose α ∈ C
k

Λr. Then we have

(jr+1s)
∗h(α) = h(α)λ1...λk

◦jr+1s dλ
1 ∧ . . . ∧ d

λ
k ,

hence h(α) = 0.
The first assertion comes from the above identities and dimX = n. QED

We set
k

Θr to be the sheaf generated (in the sense of [29]) by the presheaf kerh +
d kerh.

Remark 2.1. We stress that, in general, the sheaf axioms fail to be true for d kerh.
Anyway, if dim X = 1 and k > 1, the sum kerh+ d kerh turns out to be a direct sum
[26], and d kerh turns out to be a sheaf.

In the rest of this section, we also denote by d kerh the sheaf generated by the
presheaf d kerh, by an abuse of notation.

Lemma 2.2. If 0 ≤ k ≤ n, then d kerh ⊂ kerh, so that
k

Θr = C
k

Λr.

Proof. By the above Lemma, if α ∈ kerh, then for any section s : X → Y we
have (jrs)

∗α = 0, hence (jrs)
∗dα = 0. So, dα ∈ kerh. QED

It is clear that
k

Θr is a subsheaf of
k

Λr. Thus, we say the following natural subsequence

0 -
1

Θr
d -

2

Θr
d - . . .

d -
I

Θr
d - 0

to be the contact subsequence of the de Rham sequence. We note that, in general, the

sheaves
k

Θr are not the sheaves of sections of a vector subbundle of T ∗JrY .

Remark 2.2. In general, I depends on the dimension of the fibers of JrY → X; its
value is given in [10].
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The following theorem is proved in [10].

Theorem 2.1. The contact subsequence is exact and soft.

Now, we introduce a bicomplex by quotienting the de Rham sequence on JrY by
the contact subsequence. We obtain a new sequence, the variational sequence, which
turns out to be exact. In the last part of the section, we describe the relationships
between bicomplexes on jet spaces of different orders.

Proposition 2.1. The following diagram

0 0 0 0 0 0

0 - 0
?

- 0
?

-
1

Θr

?
d -

2

Θr

?
d - . . .

d -
I

Θr

?
d - 0

?
- . . . - 0

0 - IR
?

-
0

Λr

?
d-

1

Λr

?
d -

2

Λr

?
d - . . .

d -
I

Λr

?
d-

I+1

Λ r

?
d- . . .

d- 0

0 - IR
?

-
0

Λr

?
E0-

1

Λr/
1

Θr

?
E1-

2

Λr/
2

Θr

?
E2- . . .

EI−1-
I

Λr/
I

Θr

?
EI-

I+1

Λ r

?
d- . . .

d- 0

0
?

0
?

0
?

0
?

0
?

0
?

is a commutative diagram whose rows and columns are exact.

Proof. We have to prove only the exactness of the bottom row of the diagram.
But this follows from the exactness of the other rows and of the columns.

Definition 2.1. We say the bottom row of the above diagram to be the r–th order
variational sequence associated with the fibred manifold Y → X (see [10]).

We stress that this sequence is obtained in an intrinsic way, but it is not the unique
intrinsic one. It is obtained in order to match precise criteria, i.e. to obtain an exact
sheaf sequence that carries the appropriate information for the calculus of variations.

Proposition 2.2. The sheaves
k

Λr/
k

Θr are soft sheaves [10].

Proof. In fact, each column is a short exact sheaf sequence in which
k

Θr and
k

Λr

are soft sheaves (see [29]). QED

Corollary 2.1. The variational sequence is a soft resolution of the constant sheaf IR
over Y [10].
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Proof. In fact, except IR, each one of the sheaves in the sequence is soft [29].

The most interesting consequence of the above corollary is the following one (for a
proof, see [29]). Let us consider the cochain complex

0 - IRY
-

(
0

Λr

)

Y

d-
(

1

Λr/
1

Θr

)

Y

E1 - . . .
d -

(
J

Λr

)

Y

d - 0

and denote by Hk
VS the k–th cohomology group of the above cochain complex.

Corollary 2.2. For all k ≥ 0 there is a natural isomorphism

Hk
VS

≃ Hk
de Rham

Y

(see [10]).

Proof. In fact, the Lagrangian sequence is a soft resolution of IR, hence the coho-
mology of the sheaf IR is naturally isomorphic to the cohomology of the above cochain
complex. Also, the de Rham sequence gives rise to a cochain complex of global sec-
tions, whose cohomology is naturally isomorphic to the cohomology of the sheaf IR on
Y . Hence, we have the result by a composition of isomorphisms. (See [29] for more
details on the above natural isomorphisms.) QED

3 Finite order C–spectral sequence

The C–spectral sequence has been introduced by Vinogradov [23, 24, 25]. It is a very
powerful tool in the study of differential equations.

Here, we present a new finite order approach to variational sequences by means of

the C–spectral sequence induced by the de Rham exact sequence (
∗

Λr, d) (see Lemma
8.1) on the jet space of order r of a fibred manifold. It shall be remarked that such an
approach has already been attempted in a very particular case [5]. Indeed, our finite
order formulation presents some technical difficulties: our main tool is the splitting
of Theorem 1.2, where the direct summands have a rather complicated structure and,

above all, are not subsheaves of
k

Λr.

Then, we show the correspondence between the simplified finite order variational
sequence and the variational sequence obtained via the finite order C–spectral sequence.

Remark 3.1. The finite order C–spectral sequence is formulated here in the category
of presheaves of IR–vector spaces. This means that the constructions of Appendix B
will be done on any open set. We stress that the reason for doing this a lie in the fact
that, in our case, the function mapping open sets into homology groups is not a sheaf,
but just a presheaf.
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We consider the sheaf of differential groups (
∗

Λr, d) and the graded sheaf filtration

(Cp
∗

Λr, d)p∈N, where

C1
∗

Λr := C
∗

Λr ≡ {α ∈
∗

Λr | ∀ s section of Y → X (jrs)
∗α = 0}

and Cp
∗

Λr is the p–th power of the ideal C1
∗

Λr in
∗

Λr. We set C0
∗

Λr =
∗

Λr, and Cp
k

Λr = {0}
if p > k. We recall that

Ep,q
0 ≡ Cp

p+q

Λ r

/
Cp+1

p+q

Λ r .

Moreover, we recall the exact sequence of Lemma 8.3.

As a preliminar step, we look for a description of the sheaves Cp
p+q

Λ r. To this aim,
we introduce new projections associated to the splitting of proposition 1.1

Let 0 ≤ q ≤ n; we denote by Hp the projection

p+q

H (r+1,r) →

p⊕

l=1

p−l

C (r+1,r) ∧
q+l

H r+1 ;

we denote by V p the complementary projection, i.e. V p = id −Hp. Of course, Hp = 0
if q = n. Also, we denote by hp and vp the corresponding restrictions to the subsheaf
k

Λr.

Lemma 3.1. We have

H1 = H , Hp = H if q = n− 1 .

Remark 3.2. By the above lemma, if p > 1 and q < n− 1 then hp is not surjective on

⊕p
l=1

p−l

C r ∧
q+l

H h
r+1, in general. But the most interesting cases are p = 1 and q = n − 1,

where hp = h is surjective.

Lemma 3.2. Let p ≥ 1. Then, we have

Cp
p+q

Λ r ≃ kerhp if q < n ;

Cp
p+q

Λ r =
p+q

Λ r if q ≥ n .

Proof. We recall that (lemma 2.1 and lemma 3.1) the theorem holds for p = 1.
Then, we have the identities kerHp = imV p and imV p = 〈(imV )p〉 = 〈(kerH)p〉,
where 〈(imV )p〉 denotes the ideal generated by pth exterior powers of elements of imV

in
1+q

Λ r. So, by restriction to
k

Λr, we have kerhp = 〈(kerh)p〉. But, by definition and

lemma 2.1, we have Cp
p+q

Λ r = 〈(kerh)p〉, hence the result. QED

Now, we compute (E0, e0).
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Lemma 3.3. We have

Ep,0
0 = kerhp ;

Ep,q
0 ⊂

p

Cr ∧
q

Hh
r+1 if 1 ≤ q < n ;

Ep,n
0 ≃

p

Cr ∧
n

Hh
r+1

Ep,q
0 = {0} otherwise;

d̄ ≡ ep,q
0 : Ep,q

0 → Ep,q+1
0 : hp+1(α) 7→ hp+2(dα) .

Proof. The first and fourth assertions are trivial. As for the second one, the
inclusion is realised via the injective morphism

Ep,q
0 ≡ kerhp

/
kerhp+1 →

p

Cr ∧
q

Hh
r+1 : [α] 7→ hp+1(α) .

The third statement comes from the identity hp = 0 if q = n, which imply kerhp =
p+n

Λ ,
and lemma 3.1, which imply that hp+1 is surjective.

The sheaf morphism d̄ can be read through the above morphism; we obtain the last
assertion. QED

Proposition 3.1. The bigraded complex (E0, e0) is isomorphic to the sequence of co-
chain complexes

0 0 0 . . . 0

0

Λr

?

kerh1
?

kerh2
?

. . . kerhI

?

1

Hh
r

d̄ ?

E1,1
0

−d̄
?

E2,1
0

d̄
?

. . . EI,1
0

(−1)I d̄
?

. . .

d̄

?
. . .

−d̄

?
. . .

d̄

?
. . . . . .

(−1)I d̄

?

n

Hh
r

d̄ ?
1

Cr ∧
n

Hh
r+1

−d̄ ?
2

Cr ∧
n

Hh
r+1

d̄ ?

. . .
I

Cr ∧
n

Hh
r+1

(−1)I d̄ ?

0

d̄

?
0

−d̄

?
0

d̄

?
0

(−1)I d̄

?

The sequence becomes trivial after the I–th column.
The minus signs are put in order to agree with an analogous convention on infinite

order variational bicomplexes.
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Remark 3.3. As we will see, in the infinite order case the sheaf morphism dv yields
horizontal arrows in the sequence analogous to the above one. So, we obtain a commu-
tative bicomplex. Here, we have no horizontal arrows, due to the fact that the maps dv

raise the order of the jet by one.

Another difference with the infinite order sequence is that here the sequence becomes
trivial after a certain value of the degree p.

We note that the bottom row of the above sequence projects to 0. Also, we recall
that E1 = H(E0), where the homology is taken with respect to the sheaf morphism dh.
These two facts yield the following Theorem.

Theorem 3.1. We have the bicomplex

0 0

0

Λr

?

. . . kerhp
?

. . .

1

Hh
r

d̄ ?

. . . Ep,1
0

(−1)I d̄
?

. . .

. . .

d̄

?
. . . . . .

(−1)I d̄

?
. . .

n

Hh
r

d̄ ?

. . .
p

Cr ∧
n

Hh
r+1

(−1)I d̄ ?

. . .

0 -
n

Hh
r

/
d̄(

n−1

H h
r )

d̄ ?
E ′

n - . . .
E ′

n+p−1- (
p

Cr ∧
n

Hh
r+1)

/
d̄(Ep,n−1

0 )

(−1)I d̄ ?
E ′

n+p- . . .

0
?

0
?

where the bottom row is a presheaf of cochain complexes. The bicomplex is trivial if
p > I and vertical arrows with values into the quotients are trivial projections. We



20 On formulations of Lagrangian formalism

have the identifications

E0,n
1 =

n

Hh
r+1

/
d̄(

n−1

H h
r+1) ,

Ep,n
1 = (

p

Cr ∧
n

Hh
r+1)

/
d̄(

p

Cr ∧
n−1

H h
r+1) ,

e0,n
1 = E ′

n :
n

Hh
r+1

/
d̄(

n−1

H h
r+1) → (E1,n−1

0 )
/
d̄(

1

Cr ∧
n−1

H h
r+1) :

[h1(α)] 7→ [h2(dα)] ,

ep,n
1 = E ′

p+n : (
p

Cr ∧
n

Hh
r+1)

/
d̄(Ep,n−1

0 ) → (
p+1

C r ∧
n

Hh
r+1)

/
d̄(Ep+1,n−1

0 ) :

[hp+1(α)] 7→ [hp+2(dα)] .

Proof. The above identifications come directly from the definition of E1. As for
the last statement, by recalling the exact sequence of Lemma 8.3, we have by definition

ep,1
1 = π◦δ ,

where δ is the Bockstein operator induced by the exact sequence and π is the cohomology
map induced by the corresponding map π of the exact sequence. So, suppose that

hp+1(α) ∈ Ep,n
0 =

p

Cr ∧
n

Hh
r+1 ;

we have α ∈
p+n

Λ r. Then,

π(dα) = d̄(π(α)) = 0 ,

because d̄ raises the degree by 1 on the horizontal factor, so, dα ∈ Cp+1
p+1+n

Λ r. Being

d(dα) = 0, dα is closed in Cp+1
p+1+n

Λ r under the differential d, but dα is not exact in

Cp+1
p+n

Λ r, i.e. there does not exist a form β ∈ Cp+1
p+n

Λ r = kerhp+1 such that dβ = α.

Hence, dα determines a cohomology class [dα] in Cp+1
p+1+n

Λ r which is, by definition, the
value of δ([hp+1(α)]). The map π maps dα into hp+2(dα), hence the cohomology class
[dα] is mapped into [hp+2(dα)] by π. QED
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Theorem 3.2. We have the commutative diagram

0

0

Λr

?

1

Hh
r

d̄ ?

. . .

d̄

?

n

Hh
r

d̄ ?

0 -
n

Hh
r

/
d̄(

n−1

H h
r )

?
E ′

n- (
1

Cr ∧
n

Hh
r+1)

/
d̄(E1,n−1

0 )
E ′

n+1 -

Ẽ
n

-

. . .

0
?

where Ẽn := E ′
n ◦ d̄, and the sequence

. . .
Ẽn−1 -

n

Hh
r

Ẽn - (
1

Cr ∧
n

Hh
r+1)

/
d̄(E1,n−1

0 )
E ′

n+1- . . .

is a complex of presheaves.

Definition 3.1. We say the bottom row of the above bicomplex to be the finite order
variational sequence associated with the finite order C–spectral sequence on Y → X.

The cohomology of the above sequence will be clear in next section after proving
that it is isomorphic with the finite order variational sequence of definition 2.1.

4 Comparison between finite order approaches

In this section, we show the connection between Krupka’s variational sequence and the
variational sequence associated with the finite order C–spectral sequence.

First of all, we provide a simplified version of Krupka’s variational sequence , i.e. , a
sequence which is isomorphic to Krupka’s variational sequence but is made by sheaves
of forms or by quotient sheaves which are quotients between ‘smaller’ sheaves.

In the case 0 ≤ k ≤ n, lemma 2.2 yields immediately the following result.
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Theorem 4.1. Let 0 ≤ k ≤ n. Then, the sheaf morphism h yields the isomorphism

Ik :
k

Λr/
k

Θr →
k

Hh
r+1 : [α] 7→ h(α) .

In the case k > n, we are able to provide isomorphisms of the quotient sheaves with
other quotient sheaves made with proper subsheaves.

Proposition 4.1. Let k > n. Then, the projection h induces the natural sheaf isomor-
phism

(
k

Λr/
k

Θr

)
→

(
k−n

C r ∧
n

Hh
r+1

) /
h(d kerh) : [α] 7→ [h(α)] ,

where d kerh stands for the sheaf generated by the presheaf d kerh, by an abuse of
notation.

Proof. The map is clearly well defined.

Also, the map is injective, for if α, α′ ∈
k

Λr, then

[h(α)] = [h(α′)] ⇒ h(α− α′) = hdp ,

with p ∈ kerh. Hence

α− α′ = v(α− α′ − dp) + dp ,

where, being dp ∈
k

Λr and α− α′ ∈
k

Λr, we have v(α− α′ − dp) ∈
k

Λr. Due to h ◦ v = 0,
we have [α− α′] = 0.

Finally, the map is surjective, due to the surjectivity of h. QED

Remark 4.1. Let 0 ≤ s ≤ r. Then, the sheaf injection χr
s induces the sheaf injection

(
k−n

C s ∧
n

Hh
s+1

) /
h(d kerh) →

(
k−n

C r ∧
n

Hh
r+1

) /
h(d kerh) .

Theorem 4.2. Krupka’s r–th order variational sequence is isomorphic to the sequence

0 -
0

Λr

E0 -
1

Hh
r

E1 - . . .
En−1-

n

Hh
r

En -
(

1

Cr ∧
n

Hh
r+1

) /
h(d kerh)

En+1- . . .
En+i−1-

(
i

Ch
r ∧

n

Hh
r+1

) /
h(d kerh)

En+i- . . .

where E0 coincides with dh, and Ek([h(α)]) = [h(dα)]. Hence Krupka’s variational
sequence is isomorphic to the variational sequence associated with the finite order C-
spectral sequence, which turns out to be exact.
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Theorem 4.3. (First comparison theorem). We have the identifications

Ek = d̄ , 0 ≤ k < n ,

so Krupka’s finite order variational sequence and the variational sequence associated
with the C–spectral sequence coincide up to the degree k = n.

Proof. It comes from the above theorem and the definition of d̄. QED

Theorem 4.4. (Second comparison theorem). We have the identifications

d̄(Ep,n−1
0 ) = h(d kerh) ,

Ẽn(h(α)) = [h(dα)] ,

E ′
k(h(α)) = [h(dα)] , n < k .

where d kerh stands just for the presheaf d kerh.

Proof. In fact, we have

d̄(Ep,n−1
0 ) = hp+1(d kerhp)

but hp = h being q = n− 1, and hp+1 = h on
p+1+n−1

Λ r, hence d̄(Ep,n−1
0 ) = h(d kerh).

For the two others, we use lemma 3.1, and observe that En ◦ d̄ = En ◦ En−1 = 0, so

d̄(
n−1

H h
r ) ⊂ ker En, hence the result follows. QED

The above results prove that the two formulations yield the same variational se-
quence up to the degree n. Indeed, we can improve this result and state the equivalence
up to the order n+ 1.

Proposition 4.2. We have the sequence of presheaf isomorphisms
(

1

Cr ∧
n

Hh
r+1

) /
h(d kerh) ≃

(
1

Cr ∧
n

Hh
r+1 + P

)
∩

(
1

C(2r+1,0) ∧
n

H2r+1

)
≃

(
1

Cr ∧
n

Hh
r+1 + dh(

1

C(2r,r−1) ∧
n−1

H 2r)

)
∩

(
1

C(2r+1,0) ∧
n

H2r+1

)
≃

(
1

Cr ∧
n

Hh
r+1

) /
d̄(Ep,n−1

0 ) ,

where d kerh stands for the sheaf generated by d kerh and P stands for the sheaf gen-

erated by dh(
1

C(2r,r−1) ∧
n−1

H 2r).

Proof. The first isomorphism is proved in [28], and it is built essentially by means
of the first variation formula, as given in [9]. The first variation formula yields a section

of P for any section of
1

Cr ∧
n

Hh
r+1, but, as it is shown in [9], such a section is indeed

a section of the presheaf dh(
1

C(2r,r−1) ∧
n−1

H 2r) generating P , i.e. , it is of globally of the

form dhp, with p ∈
1

C(2r,r−1) ∧
n−1

H 2r. Hence, the second isomorphism holds. The last
isomorphism is obtained in the same way of the first one. QED
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Corollary 4.1. We have the identification Ẽn = En.

By recalling the intrinsic interpretation in terms of the calculus of variations of the
variational sequence given in [28], we give the following definition.

Definition 4.1. We say each one of the sheaves of proposition 4.2 to be the sheaf of
Euler–Lagrange morphisms.

Remark 4.2. It is very important to note that Krupka’s formulation could be modified
by using as the contact subsequence the presheaf kerh + d kerh. This would yield an
exact finite order variational sequence (exactness is a local matter), with the unique
drawback of the impossibility of computing its cohomology with the de Rham theorem
from sheaf theory. But the sequence obtained in this way would be exactly equal to
the variational sequence obtained with the finite order C–spectral sequence. And the
cohomology of the last sequence has been compute above!

5 Infinite order variational sequence

In this section, we analyse the relationships between Krupka’s finite order variational
bicomplexes of different orders. In particular, we provide a natural inclusion of the
variational bicomplex of order s > 0 into each variational bicomplex of order r > s.
Then, we evaluate the direct limit of the system of bicomplexes, obtaining an infinite
order variational sequence as the direct limit of the injective system of the finite order
variational sequences. As far as we know, this approach is original.

We have the injective system of sheaves

{
k

Θs, π
r
s
∗} .

Lemma 5.1. [10]. Let s ≤ r. Then, the injective sheaf morphism πr
s
∗ induce the

injective sheaf morphism

χr
s :

(
k

Λs/
k

Θs

)
→

(
k

Λr/
k

Θr

)
: [α] 7→ [πr

s
∗α] .

Proof. The above morphism χr
s is well defined, because

[α] = [β] ⇒ [πr
s
∗α] = [πr

s
∗β] .

The above morphism is also injective, for if α ∈
k

Λs and β ∈
k

Λs are such that

[πr
s
∗α] = [πr

s
∗β] ,

then, being πr
s
∗(α − β) ∈ πr

s
∗

k

Λs, and πr
s
∗(α − β) ∈

k

Θr, we have πr
s
∗(α − β) ∈ πr

s
∗

k

Θs,
hence [α] = [β]. QED
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Proposition 5.1. We have the injective system of sheaves

{(
k

Λr/
k

Θr) , χ
r
s} .

Remark 5.1. We have the commutative diagrams

k

Λr
d -

k+1

Λ r

k

Λs

πr
s
∗

6

d -
k+1

Λ s

πr
s
∗

6

k

Θr
d -

k+1

Θ r

k

Θs

πr
s
∗

6

d -
k+1

Θ s

πr
s
∗

6

hence we have the commutative diagram

k

Λr/
k

Θr
Ek-

k+1

Λ r/
k+1

Θ r

k

Λs/
k

Θs

χr
s
∗

6

Ek-
k+1

Λ s/
k+1

Θ s

χr
s
∗

6

We can summarise the above result by stating the existence of a (non exact) three–
dimensional commutative diagram, whose bidimensional slices are the variational bi-
complexes.

We define the presheaves on Y

k

Θ := lim
→

k

Θr .

Lemma 5.2. We have

k

Λ
/ k

Θ = lim
→

k

Λr/
k

Θr .

Lemma 5.3. The sheaf morphisms Ek induce the presheaf morphisms

Ek :

(
k

Λ/
k

Θ

)
→

(
k+1

Λ /
k+1

Θ

)
: [α] 7→ [dα] ,

for each k ≥ 0, where, being α ∈
k

Λr for some r, dα coincides with the differential of α

on
k

Λr.
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Theorem 5.1. The following diagram

0 0 0 0 0

0 - 0
?

- 0
?

-
1

Θ

?
d -

2

Θ

?
d - . . .

d -
k

Θ

?
d - . . .

0 - IR
?

-
0

Λ

?
d -

1

Λ

?
d -

2

Λ

?
d - . . .

d -
k

Λ

?
d - . . .

0 - IR
?

-
0

Λr

?
E0 -

1

Λ/
1

Θ

?
E1-

2

Λ/
2

Θ

?
E2- . . .

Ek−1 -
k

Λ/
k

Θ

?
Ek- . . .

0
?

0
?

0
?

0
?

0
?

is commutative, and rows and columns are exact presheaf sequences.

Proof. By the analogous result for finite order variational bicomplexes. QED

Note that E0 coincides with dh. Moreover, the diagram does not become trivial after
a certain value of k, as in the finite order case.

Definition 5.1. The bottom row of the above diagram is said to be the infinite order
variational sequence.

6 Infinite order C–spectral sequence

In this section we show that the above infinite order variational sequence can be recov-
ered by means of the C–spectral sequence arising naturally from a fibred manifold (see
the Appendix B) [23, 24, 25]. Indeed, we show that the C–spectral sequence induced

by the de Rham exact sequence (
∗

Λ, d) (see Lemma 8.1) allows us to recover the infinite
order variational sequence.

We recall that the C–spectral sequence is the spectral sequence associated with the

cochain complex (
∗

Λ, d) and the graded filtration (Cp
∗

Λ, d)p∈N, where

C1
∗

Λ := {ϑ ∈
∗

Λ | ∀ s section of Y → X (js)∗ϑ = 0}

and Cp
∗

Λ is the p–th power of the ideal C1
∗

Λ in
∗

Λ. We set C0
∗

Λ = {0}, and Cp
k

Λ =
k

Λ if
p > k.
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Remark 6.1. We have the injective systems {Cp
k

Λs, π
s
r}, and

Cp
k

Λ = lim
→

Cp
k

Λs .

Hence, the computations of the infinite order C–spectral sequence can be performed
both by direct evaluation and by direct limit. We will devote little space to proofs in
the infinite order case; the interested reader can consult [23, 24, 25].

A version of Lemma 3.2 can be given in the infinite order case. Hence, we can

describe the presheaves Cp
∗

Λ. The splitting of Theorem 1.3 yields the result in a much
simpler way, with respect to the finite order case.

Lemma 6.1. Let p ≥ 1. Then, we have

Cp
p+q

Λ =






p

C ∧
q

H if 0 ≤ q ≤ n− 1 ;
p+q

Λ if q ≥ n .

Lemma 6.2. [25, p.72] We have

Ep,q
0 =

p

C ∧
q

H , if 0 ≤ q ≤ n ; Ep,q
0 = {0} otherwise;

ep,q
0 = dh :

p

C ∧
q

H →
p

C ∧
q+1

H .

In other words, the bigraded complex (E0, e0) coincides with the bigraded complex

(
∗

C ∧
∗

H, dh), where the bigrading is given by the splitting of Theorem 1.3. Anyway, this
splitting yields the presheaf morphism dv too.

Proposition 6.1. The bigraded complex (
∗

C ∧
∗

H, dv) yields a bigraded complex structure

on C∗
∗

Λ via the equalities of Corollary 6.1. More precisely,

dv :
p

C ∧
q

H →
p+1

C ∧
q

H .

We recall that E1 = H(E0), where the homology is taken with respect to the presheaf
morphism dh. These two facts yield the following Theorem.

Theorem 6.1. The above bigraded complexes (
∗

C ∧
∗

H, dh) and (
∗

C ∧
∗

H, dv) yield the
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bicomplex

0 0 0

0 -
0

Λ

?
dv -

1

C

?
dv -

2

C

?
dv - . . .

0 -
1

H

dh ?
dv -

1

C ∧
1

H

−dh ?
dv -

2

C ∧
1

H

dh ?
dv - . . .

. . .

dh

?
. . .

−dh

?
. . .

dh

?
. . .

0 -

n

H

dh

n−1

H

?

e
0,n
1 -

1

C ∧
n

H

dh(
2

C ∧
n−1

H )

?

e
1,n
1-

2

C ∧
n

H

dh(
2

C ∧
n−1

H )

?

e
2,n
1 - . . .

0
?

0
?

0
?

which contains the direct limit of the finite order bicomplex arising from the C–spectral
sequence on finite order jets.

We have the identifications

Ep,n
1 = (

p

C ∧
n

H)
/
dh(

p+1

C ∧
n−1

H ) ,

ep,n
1 = E ′

p+1

Proof. It is easy to see that the direct limit of the finite order bicomplex induced by
the C–spectral sequence is constituted by the columns of the above bicomplex together
with the bottom row. In particular, one can see that the above presheaf morphisms
ep,n
1 are the direct limit of the corresponding ones of the finite order case. QED

7 Comparison between infinite order approaches

We evaluate the direct limit of the simplified version of the variational sequences of
order r, given in theorem 4.2. Clearly, this limit turns out to be isomorphic to the
direct limit of finite order variational sequences.

Remark 7.1. Let 0 ≤ s ≤ r. Then, by recalling the injective morphism of remark 4.1,
we have the injective system of sheaves

{
k

Hh
s , π

r
s} if 0 ≤ k ≤ n , {

(
k−n

C h
r ∧

n

Hh
r+1

) /
h(d kerh) , χr

s} if n < k ,

which is isomorphic to {
k

Λs/
k

Θs, χ
r
s}.
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Lemma 7.1. The following inclusions hold

h(d kerh) ⊂ dh(
k−n

C r ∧
n−1

H h
r+1) ⊂ h(

k

Θr+1) = h(d kerh) .

Proof. By using the decomposition d = dh + dv. QED

Proposition 7.1. Let k > 1. Then, we have the natural isomorphisms

k

Λ/
k

Θ ≃
k

H , if 0 ≤ k ≤ n(6)

k

Λ/
k

Θ ≃

(
k−n

C ∧
n

H

) /
dh(

k−n+1

C ∧
n−1

H ) if n < k .(7)

So, the infinite order variational sequence is isomorphic to the following sequence

0 -
0

Λ
E0 -

1

H
E1 - . . .

En−1 -
n

H
En -

(
1

C ∧
n

H)
/
dh(

2

C ∧
n−1

H )
En+1- . . .

En+i−1- (
i

C ∧
n

H)
/
dh(

i+1

C ∧
n−1

H )
En+i- . . .

where Ek coincides with dh if 0 ≤ k ≤ n, and Ek([α]) = [dv(α)] if k > n.
Proof. In fact, the isomorphisms (7) come from the above lemma. We have to

prove that Ek([α]) = [dv(α)]. But we have α = h(β), and

Ek([α]) = Ek([h(β)]) = [h(dβ)] ,

with

h(dβ) = h((dh + dv)(h(β) + v(β)) = dv(h(β)) + dh(v(β)) ,

hence the result. QED

Thus, we have provided the infinite order analogue (indeed, the direct limit) of the
sequence of Theorem 4.2. As for the comparison between the above sequence and the
infinite order variational sequences associated with the C–spectral sequence, we note
that the results of theorems4.3, 4.4 and proposition 4.2, and even remark 4.2 hold in
the direct limit.

Theorem 7.1. The infinite order variational sequence provided by the direct limit of
Krupka’s variational sequence and the infinite order variational sequences associated
with the C–spectral sequence are isomorphic up to the degree n+ 1.

In particular, the space of infinite order Euler–Lagrange morphism turn out to be
1

C(∗,0) ∧
n

H, where
1

C(∗,0) := lim
→

1

C(r,0).

Proof. The first part comes from the above quoted results, and the last assertion
comes from the following inclusions

(
1

Cr ∧
n

Hh
r+1 + P

)
∩

(
1

C(2r+1,0) ∧
n

H2r+1

)
⊂

⊂
1

C(2r+1,0) ∧
n

H2r+1 ⊂

⊂

(
1

C2r+1 ∧
n

Hh
2r+2 + P

)
∩

(
1

C(4r+3,0) ∧
n

H4r+3

)
. QED
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8 Conclusions

We have shown what are the relationships between two of the most important geometric
formulations of Lagrangian formalism. Moreover, we provided two new formulations,
each of which is inspired by one of the above two.

We stress that each formulation can be carried on independently, giving rise to
two exact sequences with the same cohomologies, and any of the two yields the same
information for the Lagrangian formalism up to the degree n+ 1.

As for the degree n + 2, we recall [10] that this yields information on the local
variationality of Euler–Lagrange operators, and there exists an intrinsic formuations of
the conditions of local variationality (Helmholz morphism, see [28]). At the present
moment we are studying the equivalence of the sequence at the degree n + 2, and we
found an equivalence up to the order r = 2. We stress that there is no interpretation in
terms of the geometric objects of the calculus of variations for sections having degree
k > n+ 2.

Appendix A: direct sums and exterior products

Let V be a vector space such that dimV = n. We recall that the box product (see, for
example, [7]) of r linear morphisms a1, . . . ar : V → V is defined to be the linear map

a1� . . .�ar :
r
∧ V →

r
∧V :

v1 ∧ . . . ∧ vr 7→
∑

σ∈Sr

|σ|a1(vσ(1)) ∧ . . . ∧ ar(vσ(r)) .

where Sr is the set of all permutation of order r. The box product fulfills

a1� . . .�ar = aσ(1)� . . .�aσ(r) ∀ σ ∈ Sr ,

a� . . .�a = r!
r
∧ a ;

so, � yields a map
k

⊙(End(V )) → End(
k
∧V ).

We have a remarkable feature of the box product. Suppose that V = W1⊕W2, with
p1 : V → W1 and p2 : V → W2 the related projections. Then, we have the splitting

m
∧ V =

⊕

k+h=m

k
∧W1 ∧

h
∧W2 ,(8)

where
k
∧W1 ∧

h
∧W2 is the subspace of

m
∧V generated by the wedge products of elements

of
k
∧W1 and

h
∧W2. The projections pk,h related to the above splitting turn out to be the

maps

pk,h =
1

k!h!
�

kp1��
hp2 :

m
∧V →

k
∧W1 ∧

h
∧W2 .
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Remark 8.1. Let V ′ ⊂ V be a vector subspace, and set W ′
1 := p1(V

′), W ′
2 := p2(V

′).
Then we have

V ′ ⊂ W ′
1 ⊕W ′

2 ,

but the inclusion, in general, is not an equality.

Appendix B: spectral sequences

In this section, we give the basic material on spectral sequences. In the first subsection
we recall the definition of spectral sequence, togheter with some preliminar concepts. In
the second subsection we give the notions of exact couple and derived couple. The third
subsection is devoted to the definition of spectral sequence associated with a filtration
of a given complex. The interest reader can consult [3, 12, 14, 18] for more details and
applications.

Spectral sequences

In this subsection we give some preliminar definitions. Note that we will introduce
graded groups and maps with degrees in N rather than Z. This is due to the fact that
in our applications we will not need a grading in Z.

Definition 8.1. A differential group is defined to be a pair (Λ, d), where Λ is an
Abelian group and d : Λ → Λ is a group morphism such that d2 = 0, or, equivalently,
im d ⊂ ker d.

The morphism d is said to be the differential of Λ.
The homology of the differential group is defined to be the abelian group

H(Λ) := ker d
/
im d .

Definition 8.2. A graded differential group (of degree g) is defined to be a pair (
∗

Λ, d),
where

∗

Λ := ⊕k∈N

k

Λ

is a graded Abelian group and d :
∗

Λ →
∗

Λ is a graded morphism of degree g, i.e.

d(
k

Λ) ⊂
k+g

Λ ,

such that d2 = 0, or, equivalently, im d ⊂ ker d.

We recall that a cochain complex is a sequence of morphisms of abelian groups of
the form

0 -
0

Λ
d0 -

1

Λ
d1 -

2

Λ
d2 - . . .



32 On formulations of Lagrangian formalism

such that dk+1◦dk = 0. This last condition is equivalent to im dk ⊂ ker dk+1. A cochain
complex is said to be an exact sequence if im dk = ker dk+1. To each cochain complex
we can define the cohomology group

H∗(
∗

Λ) = ⊕k∈NH
k(

∗

Λ) ,

where

Hk(
∗

Λ) := (ker dk)
/
(im dk−1) .

The cohomology groups vanish if and only if the cochain complex is an exact sequence.

Lemma 8.1. There is a bijection between graded differential groups (
∗

Λ, d) of degree +1
and cochain complexes

0 -
0

Λ
d -

1

Λ
d -

2

Λ
d - . . .

Moreover, the homology of (
∗

Λ, d) coincides with the cohomology of the corresponding
cochain complex.

So, we identify any graded differential group (
∗

Λ, d) of degree +1 with the cochain

complex associated with (
∗

Λ, d) via the above Lemma.

Definition 8.3. We define a spectral sequence to be a sequence of differential groups

(En, en)n∈N

such that

En+1 = H(En) .

We say that the spectral sequence converges to Er if Er = Ek for any k > r.

Exact couples

Definition 8.4. An exact couple is defined to be a pair (Q,S) of abelian groups togheter
with an exact sequence of morphisms

S
i - S

Q
�

π

�

δ
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Remark 8.2. If (Q,S) is an exact couple as above, then the pair (Q, e), where e := π◦δ,
is a differential group. In fact, (π ◦ δ)2 = 0 due to the exactness of the above diagram.

Proposition 8.1. Let (Q,S) be an exact couple, as in the above definition. Then, the
pair (E1, S1), where

E1 := H(Q) , S1 := i(S) ,

together with the diagram

S1
i1 - S1

Q1

�

π 1

�

δ
1

where

i1 : i(S) → i(S) : i(s) 7→ i(i(s)) ,

π1 : i(S) → H(Q) : i(s) 7→ [π(s)] ,

δ1 : H(Q) → i(S) : [q] 7→ δ(q) ,

is an exact couple.

Proof. One has to check that the above maps are well defined, and that the above
diagram is commutative and exact. This is straightforward. QED

The above exact couple is said to be the derived couple. The pair (E1, e1), where
e1 := π1 ◦ δ1, turn out to be a differential group.

We can consider iterated derived couples; namely, we set by induction

(E0, S0) := (E, S) ;

(En+1, Sn+1) := ((En)1, (Sn)1) ∀n > 0 ;

analogously, we define in, πn, δn, en. So, we have the sequence of differential groups
(En, en)n∈N, and the following obvious result.

Proposition 8.2. Any exact couple (E,Q) yields a spectral sequence (En, en)n∈N.

Remark 8.3. We remark that, if Q and S are graded abelian groups, i, π are graded
morphisms of degree 0 and δ is a graded morphism of degree +1, then (En, en)n∈N is a
spectral sequence which is made by graded differential groups.
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Filtered differential groups

Let (Λ, d) be a differential group. A differential subgroup is defined to be a differential

group (C, d′) such that C ⊂ Λ is an abelian subgroup and d′ = d|C. We will denote d′

by d, by an abuse of notation.

Definition 8.5. We define a filtration of a differential group (Λ, d) to be a sequence

of differential subgroups (Cp, d)p∈N of (Λ, d), where C0 := Λ, which is decreasing with
respect to the inclusion, namely

Λ ≡ C0 ⊃ C1 ⊃ C2 ⊃ . . .

If there exists l ∈ N such that Cl 6= {0} but Ck = {0} for k > l, then we say that the
filtration has finite length l.

If (Cp, d)p∈N is a filtration of (Λ, d), then we say (Λ, d) to be a filtered differential
group.

Let (Cp, d)p∈N be a filtration of (Λ, d). We define the abelian groups

Qp := Cp
/
Cp+1 , Q := ⊕p∈N Q

p .

Lemma 8.2. For each p ≥ 0, the morphism d passes to the quotient Cp/Cp+1. The
induced graded morphism of degree 0 d̄ : Q → Q fulfills d̄2 = 0. Hence, we have the
graded differential group (of degree 0) (Q, d̄).

The pair (Q, d̄) is said to be the graded differential group associated with the filtra-
tion. Moreover, we define the graded differential group (of degree 0)

S := ⊕p∈N Cp .

Lemma 8.3. We have the graded exact sequence of graded differential groups

0 - S
i - S

π - Q - 0

where i|Cp+1 : Cp+1 → Cp is the inclusion map, of degree −1, and

π|Cp : Cp → Cp
/
Cp+1

is the natural projection, of degree 0. The maps i, π commute with the differentials in
the domains and codomains.

Passing to cohomologies, we obtain the exact sequence

. . . - Hk(S)
i - Hk(S)

π - Hk(Q)
δ- Hk+1(S) - . . .

which yields the exact couple

H∗(S)
i - H∗(S)

H∗(Q)
�

π

�

δ
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where δ is the Bockstein operator, of degree +1, and the graded differential group
(H∗(Q), e), where e := π ◦ δ has degree +1, and e2 = 0. We stress that i : H∗(S) →
H∗(S) is no longer the inclusion map.

Remark 8.4. We recall the definition of the Bockstein operator in this context.
Let [α] ∈ Hk(Q). Then, being π surjective, we choose β ∈ Sk ≡ Ck such that

π(β) = α. We see that π(dβ) = d̄π(β) = 0, hence due to the exactness, there exists
a unique γ ∈ Sk+1 = Ck+1 such that i(γ) = dβ (actually, γ = dβ, because i is the
inclusion map). Finally, dβ is closed in Sk+1, due to d2β = 0, but it is not exact in
Sk+1, hence it determines a class [dβ] ∈ Hk+1(S). We can easily prove that

δ : Hk(Q) → Hk+1(S) : [α] 7→ [dβ]

is well defined.

Theorem 8.1. Let (Λ, d) be a differential group. Then, each filtration (Cp, d)p∈N of

(Λ, d) induces a graded spectral sequence (E∗
n, e

∗
n)n∈N (see Remark 8.3) as follows

E0 := Q , e0 := d̄ ;

(E∗
1 , S

∗
1) := (H∗(Q), H∗(S)) , e1 := e ≡ π ◦ δ ;

(E∗
n, S

∗
n) := (H∗(En), in−1(H∗(S))) , en := πn ◦ δn

Note that (E0, S) is not an exact couple, but (E0, e0) is a graded differential group
(of degree 1).

Definition 8.6. Let (Λ, d) be a differential group with a given filtration. We say
(E∗

n, e
∗
n)n∈N to be the (graded) spectral sequence associated with the filtered differential

group (Λ, d).

Remark 8.5. We have an important particular case of filtered differential group.

Namely, suppose that (
∗

Λ, d) is a graded differential group (of degree +1), and (
∗

Cp, d)p∈N

is a graded filtration, i.e. a filtration by graded differential subgroups whose grading is

compatible with the grading of (
∗

Λ, d).

The spectral sequence associated with (
∗

Λ, d) is a sequence of bigraded complexes
(E∗,∗

n , e∗,∗n ). More precisely, we have the bigraded differential groups

S∗,∗ := ⊕p,q∈N

p+q

C
p

, Q∗,∗ := ⊕p,q∈N

q

C
p/q−1

C
p+1

,

E∗,∗
n := ⊕

p,q∈N

Ep,q
n ,

where p is the filtration degree and p + q is the degree induced by
∗

Λ; q is said to be
the complementary degree. The morphisms i, π, δ turn out to be bigraded morphisms
with bidegrees (−1,+1), (0, 0), (+1, 0) respectively. Moreover, it can be proved that
the maps in, πn, δn have bidegrees (1,−1), (n− 1,−n+ 1), (+1, 0), respectively, hence

ep,q
n : Ep,q

n → Ep+n,q−n+1
n .
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As for the graded case we have a very important result.

Theorem 8.2. Let (
∗

Λ, d) be a graded differential group (of degree +1) with a graded

filtration (
∗

Cp, d)p∈N. Suppose that to any degree n ∈ N the filtration (
n

Cp, d)p∈N has finite

length. Then, the spectral sequence induced by the filtration converges to H∗(
∗

Λ).

Proof. It can be easily deduced from the definitions [3, p. 160]. QED
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