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Abstract

The purpose of the paper is to show that, in low dimensions,
the WDVV equations are bi-Hamiltonian. The invariance of the bi-
Hamiltonian formalism is proved for N = 3. More examples in higher
dimensions show that the result might hold in general. The invariance
group of the bi-Hamiltonian pairs that we find for WDVV equations is
the group of projective transformations. The significance of projective
invariance of WDVV equations is discussed in detail. The computer
algebra programs that were used for calculations throughout the paper
are provided in a GitHub repository.
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1 Introduction

The Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations are an overde-
termined system of Partial Differential Equations (PDEs) that originated in
two-dimensional topological field theory [17, 68]. Since then, they have been a
central subject in Theoretical Physics, with applications ranging from super-
symmetric quantum mechanics [5, 37, 46], topological quantum field theory
[39], string theory [10, 18] and supersymmetric gauge theory [40].

In nearly all the above research subjects, WDVV equations are associated
with integrable systems. The deep connections between these two fields were
first described in the seminal work of B.A. Dubrovin [24]. Since then, WDVV
equations continue to attract the attention of Mathematicians. Few recent
works show the depth and breadth of their investigation [9, 12, 60, 61, 36,
16, 69, 59, 62].

The aim of this paper is to present new results on the Hamiltonian formal-
ism for WDVV equations and related geometric properties, and eventually
stimulate further research along this direction in the field.

The Hamiltonian formalism for PDEs has been developed for more than
50 years with the idea to reproduce geometric structures and mathematical
results analogous to those of integrable systems in Hamiltonian mechanics
(see, e.g., [52]).

The main difficulty in bringing the Hamiltonian formalism to the WDVV
equations is that the Hamiltonian formalism was developed for evolution
PDEs, while WDVV equations are an overdetermined system of PDEs in a
single unknown function. More precisely, an evolutionary system of PDEs of
the form

uit = f i(uj, ujx, u
j
xx, . . .), i = 1, . . . , n (1)

in n unknown functions of two independent variables ui = ui(t, x) is said
to be Hamiltonian if there exists a linear differential operator A = Aijσ∂σ,
where Aijσ = Aijσ(uk, ukx, u

k
xx, . . .) and ∂σ = ∂x ◦ · · · ◦ ∂x (σ-times), and a

density H =
∫
h dx, where h = h(uk, ukx, u

k
xx, . . .) such that

uit = f i(uj, ujx, u
j
xx, . . .) = Aijσ∂σ

δH

δuj
. (2)

H is said to be a Hamiltonian density. The operator A is required to define
a Poisson bracket between conserved densities F , G of the PDE:

{F,G}A =

∫
δF

δui
Aijσ∂σ

δG

δuj
dx. (3)
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The skew-symmetry of the Poisson bracket is equivalent to the skew-adjoint-
ness of the operator: A∗ = −A, and the Jacobi identity is equivalent to
the vanishing of the Schouten bracket of the operator: [A,A] = 0 (see, e.g.
[19, 38, 47, 49]). An operator A fulfilling the above properties is said to be
a Hamiltonian operator.

A bi-Hamiltonian system of PDEs is just a system of PDEs that is Hamil-
tonian with respect to two operators A1, A2 (and the respective Hamilto-
nian densities). The operators are required to be compatible: their Schouten
bracket vanishes [A1, A2] = 0, or the pencil A1 + λA2 is a Hamiltonian op-
erator for every λ ∈ R. In this case, Magri’s Theorem [48] yields an infinite
sequence of commuting conserved quantities or symmetries, which is usually
identified with integrability.

In order to see how to transform the WDVV system into an evolutionary
system, we shall first recall the basic notions. We will follow [25]. The
mathematical problem is: in RN find a function F = F (t1, . . . , tN) such that

1.
∂3F

∂t1∂tα∂tβ
= ηαβ is a constant symmetric nondegenerate matrix;

2. cγαβ = ηγε
∂3F

∂tε∂tα∂tβ
are the structure constants of an associative alge-

bra;

3. F is quasihomogeneous: F (cd1t1, . . . , cdN tN) = cdFF (t1, . . . , tN).

If e1,. . . , eN is the basis of RN then the algebra operation is eα ·eβ = cγαβ(t)eγ
with unity e1. The WDVV, or associativity, system of PDEs takes the form

ηµλ
∂3F

∂tλ∂tα∂tβ
∂3F

∂tν∂tµ∂tγ
= ηµλ

∂3F

∂tν∂tα∂tµ
∂3F

∂tλ∂tβ∂tγ
. (4)

The unknown of the system is not exactly F , as the above requirements
completely specify the functional dependence from t1 (up to a second degree
polynomial, see [25]):

F =
1

6
η11(t1)3 +

1

2

∑
k>1

η1kt
k(t1)2 +

1

2

∑
k,s>1

ηskt
stkt1 + f(t2, . . . , tN). (5)

This implies that the WDVV system is an overdetermined system in one
unknown function f of N − 1 independent variables. Just as an example, in
the case N = 3 we have a single equation on f = f(t2, t3) = f(x, t). It was
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proved in [24] that, when η11 = 0, the matrix ηαβ can be transformed by a
linear change of coordinates that preserves ∂/∂t1 to

ηαβ = δα+β,N+1 =

0 0 1
0 1 0
1 0 0

 , (6)

and the WDVV equation becomes

fttt = f 2
xxt − fxxxfxtt. (7)

A technique was developed by O. Mokhov [50] in order to rewrite the
WDVV equation in the case N = 3 as a first-order quasilinear system, or
hydrodynamic-type system, of PDEs. Namely, if we introduce coordinates
a = fxxx, b = fxxt, c = fxtt then for (7) we have the compatibility conditions

at = bx,
bt = cx,
ct = (b2 − ac)x

(8)

We will say that the above system is a first-order WDVV system. The above
system is of the general conservative first-order quasilinear form

uit = (V i(u))x =
∂V i

∂uj
ujx, (9)

where ui = ui(t, x) are field variables, i = 1, . . . , n. The above representation
allowed to find a bi-Hamiltonian formalism for the equation (7) [29]:

uit = Aij1
δH2

δuj
= Aij2

δH1

δuj
. (10)

with respect to two compatible local Hamiltonian operators A1 and A2, with
expressions

A1 =

−3
2
∂x

1
2
∂xa ∂xb

1
2
a∂x

1
2
(∂xb+ b∂x)

3
2
c∂x + cx

b∂x
3
2
∂xc− cx (b2 − ac)∂x + ∂x(b

2 − ac)

 , (11a)

A2 =

 0 0 ∂3
x

0 ∂3
x −∂2

xa∂x
∂3
x −∂xa∂2

x ∂2
xb∂x + ∂xb∂

2
x + ∂xa∂xa∂x

 . (11b)
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The above Hamiltonian operators are homogeneous with respect to the grad-
ing deg ∂x = 1. The Hamiltonian densities are H2 =

∫
c dx (for A1) and

H1 =
∫

[−(1/2)a(∂−1
x b)2 − (∂−1

x b)(∂−1
x c)] dx (for A2; this one is nonlocal). It

should be remarked that B. Dubrovin proved that WDVV equations are in-
tegrable by providing a Lax pair for arbitrary N [24]. Nonetheless, knowing
the bi-Hamiltonian formalism for a system of PDEs is an additional source
of information. In the WDVV case, it will be shown here that the additional
information is provided by the invariance properties of the bi-Hamiltonian
structure.

First-order homogeneous Hamiltonian operators (HHOs) were introduced
in [26]. They have the form

Aij1 = gij∂x + Γijk u
k
x, (12)

where gij = gij(u) transforms as a symmetric contravariant tensor (we will al-
ways assume that det(gij) 6= 0) whose inverse gij is a flat pseudo-Riemannian
metric with Christoffel symbols Γijk = −gjsΓsik .

It should be stressed that solutions of WDVV equations yield Frobenius
manifolds, or integrable hierarchies of PDEs defined by bi-Hamiltonian pairs
of first-order HHOs (see, e.g., [22, 21, 24]). However, the above quasilinear
system of first-order PDEs (8) is exceptional with respect to the theory of
Frobenius manifolds as it is bi-Hamiltonian with respect to a pair of a first-
order HHO and a third-order HHO. Higher order homogeneous Hamiltonian
operators were introduced in [23], and have a considerably more complicated
structure than (12). Third-order HHOs can always be transformed to the
canonical form

A2 = ∂x(h
ij∂x + cijk u

k
x)∂x, (13)

(again, we require that the leading coefficient is non-degenerate: det(hij) 6= 0)
[20, 57, 58, 7] which is invariant with respect to the action of projective
reciprocal transformations [33, 34] (see Section 2 for more details).

In further papers it was shown that a bi-Hamiltonian formulation as above
exists for a different choice of the matrix ηij (in the case N = 3) [41] or after
the exchange of t and x in (7) [42], and much more recently, in the case
N = 4 for η(1) (14) [55]. In a new interesting paper [51], the classification
of N = 3 WDVV equations admitting a Hamiltonian formalism with a local
first-order HHO as in (11) was given.

It was natural to try to prove that WDVV equations admit a bi-Hamilto-
nian formulation by means of a compatible pair of a first-order HHO and a
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third-order HHO for any choice of η. The idea for the proof is first to prove
that the invariance group of WDVV equations, i.e. linear transformations in
the space (t1, . . . , tN) that leave ∂/∂t1 invariant [25], do not change the form
of a bi-Hamiltonian pair as above. Then, it is enough to prove the statement
only on normal forms with respect to the invariance group.

Indeed, using the invariance group of the problem, one can reduce the
matrix ηij to two canonical forms if the quasihomogeneity weights are dis-
tinct:

η11 = 0: the canonical form is η(1) = (η
(1)
αβ ) with

η
(1)
αβ = δα+β,N+1 =

0 1

. .
.

1 0

 (14)

where F = 1
2
(t1)2tN + 1

2
t1
∑N−1

α=2 t
αtN−α+1 + f(t2, . . . , tN);

η11 6= 0: this case can only happen if dF = 3, and the canonical form is
η(2) = (η

(2)
αβ ) with

η
(2)
αβ = δα+β,N+1 =

µ 1

. .
.

1 0

 (15)

where µ 6= 0 and F = µ
6
(t1)3 + 1

2
t1
∑N

α=2(tα)2 + f(t2, . . . , tN).

If one drops the quasihomogeneity request on F , a smaller group of linear
transformations can be used to show that if N = 3 then there are 4 dis-
tinct canonical forms [51]. The results in [51] also suggested that we should
consider a wider class of first-order HHOs, namely the non-local Ferapontov
operators (see e.g. [27]). It should be stressed that the necessary theoretical
background and software for computations with nonlocal operators was not
available until recently [14, 15].

That led to the first part of the results in this paper. Namely, in the case
N = 3 we have:

� for any choice of the matrix η the first-order WDVV systems admit a
third-order homogeneous Hamiltonian operator in canonical form

A2 = ∂x(h
ij∂x + cijk u

k
x)∂x; (16)

7



� the first-order WDVV systems defined by matrices η in the orbit of
η(1) admit a first-order local homogeneous Hamiltonian operator of the
type

Aij1 = gij∂x + Γijk u
k
x; (17)

� the first-order WDVV systems defined by matrices η in the orbit of
η(2) admit a first-order non-local homogeneous Hamiltonian operator
of Ferapontov type

Aij1 = gij∂x + Γijk u
k
x + αV i

q u
q
x∂
−1
x V j

p u
p
x

+ β
(
V i
q u

q
x∂
−1
x ujx + uix∂

−1
x V j

q u
q
x

)
+ γuix∂

−1
x ujx, (18)

where V i
j = ∂V i/∂uj is the matrix of velocities of the first-order WDVV

system (9) and α, β, γ are three constants;

� finally, first-order WDVV systems are bi-Hamiltonian: the Schouten
bracket of the two operators vanishes, [A1, A2] = 0, or the pencil A1 +
λA2 is a Hamiltonian operator for every λ ∈ R.

� We also realized that the quasihomogeneity of F in the assumptions
on the WDVV problem (item 3 on page 4) can be dropped without
changing all our results in the above items. Indeed, in a recent pa-
per [51] Mokhov and Pavlenko classified the WDVV equations without
the requirement of quasihomogeneity of the solutions, and obtained 4
canonical forms. For all of them we recover the bi-Hamiltonian pair,
as we will show in Section 4.2.

The above results imply that in the case N = 3 the WDVV quasilin-
ear first-order systems are linearly degenerate, non diagonalizable and in the
Temple class, as it follows from the main results in [35]. Indeed, the presence
of third-order operators yields many interesting properties of the underlying
first-order quasilinear system of PDEs.

In higher dimensions proving a general invariance theorem is more diffi-
cult, and will be considered in the future. However, if N = 4 and η = η(1) it
was already known that the first-order WDVV system had a first-order local
HHO [31] and a compatible third-order HHO [55]. In this paper we prove
that

� if N = 4 and η = η(2) then the first-order WDVV system admits a
third-order HHO of the form (13);
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� if N = 5 and η = η(1) or η = η(2) (with µ = 1, as the case with an
arbitrary µ 6= 0 was beyond the capabilities of our servers), then the
first-order WDVV systems admit a third-order HHO of the form (13).

We did not try to find the first-order operator in the case N = 4 and
η = η(2) or when N = 5: indeed, the results in [11] that we used to find the
first-order operators in the case N = 3 do not hold when N ≥ 4.

Even if invariance is fully stated only in the case N = 3, the presence of
first-order and third-order HHOs in higher dimensions is enough to support
the following conjecture.

Conjecture. The WDVV equations in the form of quasilinear systems of
first-order PDEs are bi-Hamiltonian with respect to a pair of a third-order
HHO in canonical form (13) and a first-order HHO, which can either be local
(12) in the case η = η(1), or nonlocal of general Ferapontov type

Aij1 = gij(u)∂x + Γijk (u)ukx +
∑
α

cαβwiαk(u)ukx∂
−1
x wjβh(u)uhx, (19)

where cαβ is a constant symmetric matrix, in the case η = η(2).

There are interesting implications of the conjecture. Indeed, it was proved
in [33, 35] that third-order HHOs can be regarded as distinguished projec-
tive varieties, namely, quadratic line complexes. They determine families of
varieties, linear line congruences, that correspond to first-order quasilinear
systems of PDEs (first-order WDVV being one such systems in all known
cases).

As the above correspondence between integrable systems and projective
varieties is non-standard, it is instructive to show it in the simplest example
of WDVV equation (7). We will use the form (8). The leading coefficient
ḡ = (gij) of A2 in (11b):

(gij) =

0 0 1
0 1 −a
1 −a 2b+ a2

 (20)

has the inverse matrix g = ḡ(−1) that is a Monge metric. It can be written
in the form

g = −2bda2 + 2a da db+ 2 da dc+ db2. (21)
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Now, it is easy to realize that the above metric represents the equation of a
quadratic line complex in the space of lines of the projective space P3. Indeed,
considering two infinitesimally close points in a 4-dimensional projective
space P = [u0, u1, u2, u3] and P +dP = (u0 +du0, u1 +du1, u2 +du2, u3 +du3),
the minors of the matrix (P, P + dP ) turn out to be of the form pij =
uiduj − ujdui (note that u0 = 1 and du0 = 0 when passing to the affine
coordinates a = u1, b = u2, c = u3). Such forms are the Lie form of Plücker
coordinates. We recall that the Plücker coordinates characterize lines in P3

modulo the further Plücker relations pijphk + pihpkj + pikpjh = 0. We can
rewrite g as

g = 2(a db− b da) da+ 2da dc+ db2. (22)

The above metric turns out to be a quadratic expression in the Lie form of
Plücker coordinates; the corresponding quadratic line complex is given by
the system

2p12p01 + 2p01p03 + (p02)2 = 0, p01p23 + p02p31 + p03p12 = 0. (23)

The line congruence corresponding to the system (8) is an n-parameter family
of lines in Pn+1. In homogeneous coordinates [y1, . . . , yn+2] it has the general
form yi = uiyn+1 + V iyn+2 [4, 3]. The lines of the congruence pass through
the points yi = ui, yn+1 = 1, yn+2 = 0 and yi = V i, yn+1 = 0, yn+2 = 1,
respectively. The corresponding Plücker coordinates are the minors of the
matrix (

u1 · · · un 1 0
V 1 · · · V n 1 0

)
(24)

The line congruence is linear if there are n linear relations between the
Plücker coordinates; these are n linear line complexes. As it was proved
in [35], every first-order quasilinear system of PDEs admitting a third-order
HHO is associated with a linear line congruence. In the WDVV example (8)
the linear line congruence takes the form

y1 = ay4 + by5, y2 = by4 + cy5, y3 = cy4 + (b2 − ac)y5 (25)

The above constructions have a general validity: each time that a third-
order HHO in the form (13) is found for a system of conservation laws (as we
will do many times in the paper) then one can construct the corresponding
algebraic varieties.
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Then, it turns out that the bi-Hamiltonian pairs and the systems of first-
order PDEs are invariant with respect to projective reciprocal transforma-
tions. These are non-local (or non-holonomic) transformations of the inde-
pendent variables of the form

dx̃ = (aiu
i + a)dx+ (aiV

i + b)dt,
dt̃ = (biu

i + c)dx+ (biV
i + d)dt,

(26)

which, together with the affine transformation of dependent variables, gen-
erate the projective action on the linear line congruence and the quadratic
line complex. More in detail, the above transformation can be factorized in
a sequence of transformations R1 ◦ E ◦R2 where E is just the exchange of t
and x and Ri are transformations of the form

dx̃ = (aiu
i + a)dx+ (aiV

i + b)dt, dt̃ = dt, (27)

where the dependent variables undergo a projective transformation ũi =
(Aiju

i + Ai0)/(aiu
i + a) (see [35] for the definition). Hence, the whole bi-

Hamiltonian WDVV hierarchy becomes a projective-geometric object (in
known cases). The above conjecture can be rephrased as follows:

Conjecture. To every WDVV system there are associated a quadratic line
complex and a linear line congruence.

This fact might have an (at the moment unpredictable) impact in the
applications of WDVV equations. The projective group, in its realization as
a group of distinguished reciprocal transformations, is larger than the invari-
ance group of WDVV equations (which is the group of linear transformations
leaving ∂/∂t1 invariant, see Section 3) and its implications in the search for
solutions of WDVV equations is still to be understood. Consequences in pro-
jective and enumerative geometry are not unlikely. See Section 6 for details.

The paper is structured as follows. Section 2 describes the pre-requisites
on homogeneous Hamiltonian operators. In Section 3 the invariance of bi-
Hamiltonian pairs with respect to invariance transformations of WDVV equa-
tions is proved. In Section 4 bi-Hamiltonian formalism for all normal forms
of WDVV equations in the case N = 3 is provided. Section 5 considers the
problem of finding Hamiltonian structures for WDVV in higher dimensions.
The concluding Section 6 discusses the projective-geometric aspects of the
results obtained so far.
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The calculations have been done by means of computer algebra systems.
In particular, Schouten brackets involving nonlocal operators have been cal-
culated by the Reduce package CDE, and checked by the Maple package
jacobi.mpl; both packages are described in [14, 67] (see also [47]). Further
calculations have been done in Reduce (finding first-order nonlocal operators
when N = 3, and finding third-order operators in the cases N = 3, N = 4)
and in Maple, also using the package Jets [8] (finding third-order operators
in the case N = 5). The programs are available at a GitHub repository [65].

2 Preliminaries: Hamiltonian operators

In this paper we will look for Hamiltonian operators for quasilinear systems of
first-order PDEs that are generated by WDVV equations. Known examples
suggest that these can be homogeneous operators of first and third order.
Let us describe such classes more in detail.

First order local homogeneous operators (12) have already been described
in the Introduction. We will need their nonlocal generalization (19). Such op-
erators were introduced and studied by Ferapontov (see [27]). We will always
assume that the leading coefficient is a non-degenerate matrix: det(gij) 6= 0
(we set (gij) = (gij)−1). It is well known that the Hamiltonian property is
equivalent to the following conditions: the symmetry of gij, the fact that
Γjik = −gipΓpjk are the Christoffel symbols of gij (interpreted as a pseudo-
Riemannian metric), and the identities:

gikwjαk = gjkwiαk, (28a)

∇kw
i
αj = ∇jw

i
αk, (28b)

[wα, wβ] = 0, (28c)

Rij
kl = cαβ

(
wiαkw

j
βl − w

j
αkw

i
βl

)
. (28d)

Here, ∇ is the Levi-Civita connection of gij, R
ij
kl = gisRj

skl (we follow the
sign conventions of [21]), the bracket [wα, wβ] is the usual commutator of
the matrices wα = wiαk and wβ = wiβk. If the operator is local, then the
conditions reduce to those of the local operators (17).

Third-order homogeneous Hamiltonian operators are much more com-
plicated in general. However, in the canonical form (13) (again, we will
assume that the leading coefficient is non-degenerate, det(hij) 6= 0, and we
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set hij = (hij)−1) the Hamiltonian property of A2 implies that cijk being given
by

cskm =
1

3
(hsm,k − hsk,m), (29)

where cijk = hiqhjpc
pq
k , so that the leading coefficient determines the operator

[33]. The Jacobi property further implies that [33]

hmk,s + hks,m + hms,k = 0, (30)

cmsk,l = −hpqcpmlcqsk. (31)

The equation (30) is equivalent to the fact that hij is the Monge form, or
Monge metric, of a quadratic line complex, a distinguished family of projec-
tive varieties. The projective properties of third-order HHOs will be discussed
in Section 6.

It is important to remark that hij turn out to be second degree poly-
nomials with respect to the field variables, under the further algebraic con-
straints (30). A complete classification of operators in the form (13) is given
in [34, 33] for a number of components n ≤ 4. The classification uses the
projective invariance of third-order homogeneous operators with respect to
reciprocal transformations of the form (27).

We need a way to find Hamiltonian operators for WDVV systems. This
is provided by the theory of differential coverings [43]. In our particular case,
it is known [63] (but see also [66]) that a necessary condition for A1 (both in
the local and non-local case) to be the Hamiltonian operator of a quasilinear
system of first-order PDEs (9) is:

gikV j
k = gjkV i

k , ∇iV j
k = ∇jV i

k , (32)

where V i
k = ∂V i/∂uk and ∇j is the Levi-Civita connection of gij. In the case

of third-order operators it was recently found [35] that the compatibility
conditions between a third-order Hamiltonian operators and a quasilinear
system of first-order conservation laws (9) are:

himV
m
j = hjmV

m
i , (33a)

cmklV
m
i + cmikV

m
l + cmliV

m
k = 0, (33b)

hksV
k
ij = csmjV

m
i + csmiV

m
j . (33c)

It is interesting to observe that the conditions (32) might be relatively difficult
to solve for the metric gij, while the system of compatibility conditions for
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hij, being expressed in lower indices, is indeed a linear algebraic system with
respect to the coefficients of the second degree polynomials hij, which is easy
to solve.

3 WDVV equations as systems of

conservation laws

As we have seen in the Introduction, the WDVV equations (4) in the un-
known function f = f(t2, . . . , tN) (5) are presented as a system of conserva-
tion laws (9) by introducing new dependent variables. The general algorithm
for the transformation was first given in [50] in the case N = 3 and then gen-
eralized for arbitrary values of N in [31], the details are exposed below.

Algorithm.

1. Choose one distinguished independent variable ti, i > 1 (for example
t2), and all third-order derivatives of f that contain at least one instance
of t2; call them u1 = ft2t2t2, u2 = ft2t2t3, . . . , un = ft2tN tN . These are
new dependent variables, and n = N(N − 1)/2.

2. Choose another independent variable tj 6= t2, j > 1 (for example t3),
and, for any ui, find uit3 as the t2-derivative of an expression V i:

uit3 = V i(u)t2 . (34)

There are two possibilities:

(a) either V i(u) is one of the coordinates uk, with k 6= i;

(b) V i is a third-order derivative of f which is not one of the uk. In
this case, V i must be expressed by means of one of the equations
of the WDVV system. This is always possible due to the structure
of the WDVV system.

There are equations in the WDVV system which depend on variables
that are not t2 or t3 derivatives; such equations shall be discarded in the
above construction. However, changing the two distinguished independent
variables, and using other equations in the WDVV system, one obtains N−2
distinct commuting systems of conservation laws with the same structure as
above.
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In general, first-order WDVV-systems for a fixed (but arbitrary) N and
a fixed choice of η are provided by the Algorithm as N − 2 commuting two-
dimensional quasilinear first-order systems of PDEs with n = N(N − 2)/2
components [31].

Definition 1. We say that a quasilinear first-order system of conservation
laws (34) where (ui) are third-order derivatives of f and the equations are
compatibility conditions for a WDVV system to be a first-order WDVV sys-
tem.

The purpose of this paper is to show that first-order WDVV systems
admit a third-order HHO in canonical form (13) and a compatible first-order
local or non-local operator of the type (18) for low dimension N .

In particular, in the case N = 3 we will be able to prove that all first-order
WDVV systems, i.e. for any choice of matrix η, admit a bi-Hamiltonian pair
as stated above. To this aim, the strategy is:

1. prove that the invariance group of the WDVV equations do not affect
the ‘form’ of a bi-Hamiltonian pair as above;

2. prove that there is a bi-Hamiltonian pair as above for each canonical
form of the WDVV equations, i.e., the canonical form of the matrix
ηij.

The invariance group of the WDVV equations with the quasihomogeneity
constraint is the group of linear transformations that preserve the direction
of ∂/∂t1:

t̃α = Pα
β t

β +Qα, det(Pα
β ) 6= 0, Pα

1 = δα1 (35)

[25]. We have the transformation rules

∂

∂tα
= P β

α

∂

∂t̃β
, dt̃α = Pα

β dt
β, (36)

which imply that the equation (4) is transformed into the same equation with
respect to the new coordinates (t̃α) (of course, one should change coordinates
in F and ηij).

Theorem 2. Let N = 3, and suppose that a WDVV system in first-order
form uit = (V i(u))x is bi-Hamiltonian with respect to a pair of compatible
Hamiltonian operators A1, A2, where A1 is a nonlocal first-order HHO (18)
and A2 is a local third-order HHO (13).
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Then, the coordinate change (35) does not change the form of the bi-
Hamiltonian pair A1, A2.

Proof. The matrix P = (Pα
β ) of the change of coordinates can be factorized

as

P = T1 · T2, where (37)

P =

1 P 1
2 P 1

3

0 P 2
2 P 2

3

0 P 3
2 P 3

3

 , T1 =

1 0 0
0 P 2

2 P 2
3

0 P 3
4 P 3

3

 , T2 =

1 P 1
2 P 1

3

0 1 0
0 0 1

 . (38)

The matrix T1 can be further factorized as

T1 = R1 · E ·R2, where (39)

R1 =

1 0 0
0 α β
0 0 1

 , E =

1 0 0
0 0 1
0 1 0

 , R2 =

1 0 0
0 γ δ
0 0 1

 . (40)

when P 3
2 6= 0 (when it is zero no factorization is needed).

Let us now choose t = t3 and x = t2. When N = 3 there is only
one WDVV equation, from which the above Algorithm yields the following
system:

u1
t = u2

x,

u2
t = u3

x,

u3
t = φ(u)x,

(41)

where φ is a rational function of the field variables.
The transformation T2 does not change third-order derivatives of f , hence

it does not affect the system (41).
The transformation R1 (equivalently, R2) has the effect of a reciprocal

transformation that preserves the coordinate t, namely

dx̃ = P 2
2 dx+ P 2

3 dt = αdx+ βdt, dt̃ = dt. (42)

Such transformations are proved to preserve the canonical form of a third-
order HHO [33] and the locality (or the non-local form) of a first-order HHO
[54, 32]. At the same time, the third-order derivatives u1 = fxxx, u

2 = fxxt,
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u3 = fxtt undergo the affine transformation:

u1 = α3ũ1,

u2 = α2βũ1 + α2ũ2,

u3 = αβ2ũ1 + 2αβũ2 + αũ3,

(43)

where ũ1 = fx̃x̃x̃, ũ
2 = fx̃x̃t̃, ũ

3 = fx̃t̃t̃. Again,that does not modify the
structure of the bi-Hamiltonian pair.

The transformation E is just an exchange of the independent variables.
It preserves both the canonical form of the third-order HHO [35] and the
locality (or the non-local form) of the first-order HHO. This completes the
proof.

Remark 3. In the case N = 3 after a change of coordinates of the type R1

we obtain a new WDVV equation. Hence, we can construct a new quasilinear
first-order WDVV system:

ūit̄ = (V̄ i(ū))x̄ (44)

using the above Algorithm. However, it can be proved that in general there
does not exist an affine transformation that brings the new system into the
system ũit̄ = (Ṽ i(ũ))x̃. Later, the relation between the two systems will be
clarified.

Remark 4. In the case N = 3 the transformation E brings the system (41)
into the system

ũ1
t̃ = φ(ũ)x̃, ũ2

t̃ = ũ1
x̃ , ũ3

t̃ = ũ2
x̃; (45)

interchanging ũ1 and ũ3 bring the system in the same form as (41).

The case N = 4 cannot be treated in the above way. Indeed, the in-
variance transformation mix the independent variables, and the commuting
systems are transformed in a more complicated way. However, we will be able
to show that third-order HHO are present for first-order WDVV systems in
canonical forms of WDVV equations when N = 4 and N = 5.

4 Bi-Hamiltonian formalism for WDVV equa-

tions, N = 3

Having Theorem 2 at hand, we can investigate N = 3 WDVV systems and
look for bi-Hamiltonian pairs in their representation as quasilinear systems
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of first-order PDEs. If we prove that if the WDVV system obtained by each
canonical form of the matrix ηij is endowed with a bi-Hamiltonian pair of
the type that we discussed in the Introduction, then this will be true for an
arbitrary matrix ηij.

We will also discuss bi-Hamiltonian pairs for the canonical forms in [51]
and for one significant example which comes from centroaffine geometry [28].

While we will look for third-order operators in the canonical form (13),
we shall explain the reason for choosing the ansatz (18) for the first-order
operators.

Indeed, computational experiments show that Dubrovin’s canonical form
η(2) does not admit a local first-order HHO. Then, the form (18) is the only
possibility in the class of Ferapontov operators: the vectors that multiply ∂−1

x

must be (generalized) commuting symmetries of the quasilinear systems of
PDEs in view of the Hamiltonian property of A1 [27] (see (28)). Now, first-
order WDVV systems are non-diagonalizable, as we will discuss in Section 6,
and non-diagonalizable systems with a low number of components have only
two such symmetries1, namely ϕ1 = uix∂/∂u

i and ϕ2 = (V i)x∂/∂u
i, which

correspond to t and x translational symmetries. This means that the Hamil-
tonian property for an operator A1 of the form (18) is equivalent to the
conditions (28a), (28b) and

Rij
kl =α

(
V i
kV

j
l − V

i
l V

j
k

)
+ β

(
V i
k δ

j
l − V

j
k δ

i
l − V i

l δ
j
k + V j

l δ
i
k

)
+ γ(δikδ

j
l − δ

i
lδ
j
k)

(46)

(obviously, the above two symmetries commute). So, finding operators (18)
amounts at finding the metric gij and the three constants α, β, γ.

To this end, we recall a theorem in [11] that states that, for non-diagonaliz-
able hydrodynamic-type systems in n = 3 unknown functions, the metric of
a first-order Hamiltonian operator for the system shall be proportional to a
contraction of the square of the Haantjes tensor:

gij = f Hα
iβH

β
jα, f = f(u). (47)

See [11, eq. 2.2 and 2.4] for a coordinate expression of the Nijenhuis and the
Haantjes tensors.

Summarizing, in the case n = 3 there are one unknown function and three
unknown constants to be determined in order to find a first-order operator.

1There is only experimental evidence of this fact for n = 3, 4, 5 (E.V. Ferapontov,
private communication).
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We will use the above equations in order to determine, by computer algebra,
the first-order operator A1 for first-order WDVV systems.

4.1 B.A. Dubrovin’s normal forms of η

We start with a result that follows from known calculations.

Theorem 5. Each first-order WDVV system in the orbit of η(1) under the
action of the transformations (35) is endowed by a compatible pair of local
homogeneous Hamiltonian operators A1 as in (12) and A2 as in (13).

Proof. The existence of a bi-Hamiltonian pair as in the statement was proved
in [29] (see also the Introduction). The fact that the bi-Hamiltonian pair
propagates to each element of the orbit is a direct consequence of Theorem 2.

A completely new result holds for Dubrovin’s second canonical form (15).
We stress that we could obtain this result only for recent developments in
the calculations of Schouten brackets for weakly nonlocal operators [13, 14].

Theorem 6. Each first-order WDVV system in the orbit of η(2) under the
action of the transformations (35) is endowed by a compatible pair of homo-
geneous Hamiltonian operators A1, a nonlocal operator as in (18), and A2

as in (13).

Proof. If η11 6= 0, then we have the canonical form

η =

µ 0 1
0 1 0
1 0 0

 (48)

with µ 6= 0, to which it corresponds the equation

µftttfxxt − fttt + (fxxt)
2 − fxxxfxtt − µ(fxtt)

2 = 0. (49)

The Algorithm yields the quasilinear first-order system

at = bx,

bt = cx,

ct =

(
ac− b2 + µc2

µb− 1

)
x

,

(50)

19



where we used the notation a = fxxx, b = fxxt, c = fxtt for the sake of sim-
plicity. We will adopt the same notation throughout the rest of the Section.

The above system admits a third-order HHO A2 which is completely
determined by the metric

hij =

 b(µb− 2) (a+ µc)(1− µb) (µb− 1)2

(a+ µc)(1− µb) µ(a+ µc)2 + 1 µ(a+ µc)(1− µb)
(µb− 1)2 µ(a+ µc)(1− µb) µ(µb− 1)2

 , (51)

and has the following form:

A2 =

−µ∂3
x 0 ∂3

x

0 ∂3
x ∂2

x
a+µc
µb−1

∂x
∂3
x ∂x

a+µc
µb−1

∂2
x

1
2
(∂2
xK∂x + ∂xK∂

2
x)

 , (52)

where

K =
(a+ µc)2 + b(2− µb)

(µb− 1)2
. (53)

We stress that the operator lies in the projective class g(3), according to the
classification in [34, 33]. Systems that possess a third-order Hamiltonian
operator have a non-local Hamiltonian that is specified in [35].

Using the results from [11] (see the beginning of the Section) we find that
the system (50) has the first-order operator of Ferapontov type A1 defined
by the metric

gij =

b
2µ2 − a2µ− 2bµ− 3 a− abµ+ bcµ2 − cµ 2b− b2µ+ c2µ2

a− abµ+ bcµ2 − cµ 2b− b2µ+ c2µ2 c(acµ2−2b2µ2+4bµ+c2µ3−3)
bµ−1

2b− b2µ+ c2µ2 c(acµ2−2b2µ2+4bµ+c2µ3−3)
bµ−1

δ
(bµ−1)2

 ,

(54)

where

δ = a2c2µ2 − 2ab2cµ2 + 4abcµ+ 2ac3µ3 − 4ac+ b4µ2 − 4b3µ− 3b2c2µ3

+ 4b2 + 6bc2µ2 + c4µ4 − 5c2µ

and the values of constants from (18) are α = −µ2, β = 0, γ = µ.
Using the results from [15] and the module developed in [14] of the soft-

ware package CDE we are able to prove the compatibility of A1 and A2: the
Schouten bracket [A1, A2] vanish.

The fact that the bi-Hamiltonian pair propagates to each element of the
orbit is a direct consequence of Theorem 2.
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4.2 O.I. Mokhov and N.A. Pavlenko’s normal forms of
η

In a recent paper [51] Mokhov and Pavlenko classified the WDVV equations
(4), without the requirement of quasihomogeneity of the solutions (item 3 in
the Introduction), under transformations of the type T1 (37). They came to
the following four canonical forms:

η1 =

0 0 1
0 λ 0
1 0 µ

 , λ2 = 1; η3 =

1 0 1
0 0 1
1 1 0

 ; (55)

η2 =

1 0 1
0 λ 0
1 0 µ

 , λ2 = 1; η4 =

1 0 0
0 λ 0
0 0 µ

 , λ2 = 1, µ2 = 1. (56)

According to Theorems 5 and 6, the above examples can be rewritten as bi-
Hamiltonian first-order WDVV systems. Let us provide the first-order and
third-order HHOs in all the above cases.

The case η1. In this case in [51] it is provided a first-order local HHO A1
1.

We look for a third-order one. The WDVV equations in first-order form are
of the type (41), where the function φ is defined by

φ = b2 − ac− λµb+ µ2. (57)

It is easy to show that the equations (33) have the unique solution hij

hij =

−2b+ λµ a 1
a 1 0
1 0 0

 . (58)

which is of type g(5) (as (8)) according to the classification in [33]. We will
omit the corresponding operator A1

2, as it can be easily reconstructed.
The Schouten bracket [A1

1, A
1
2] turns out to be zero and thus the above

operators are compatible; the computation has been performed by means of
the Reduce package CDE, see [47, 67].
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The case η2. For η2 we have the function φ(a, b, c):

φ(a, b, c) =
b2 − ac− λc2 − µb2 + µac− µλb+ µ2

1− λb
, (59)

for an arbitrary real constant µ.
In this case, the WDVV system in first-order form has a third-order HHO

which is completely determined by the metric of type g(3) [34, 33]:

hij =

µ− b(2λ− b)
(λ−b)(µa−λc−a)

µ−1
−(λ−b)2λ
µ−1

(λ−b)(µa−λc−a)
µ−1

(µ−1)2(λ+a2)−2(µ−1)λac+c2

(µ−1)2
−(µa−λc−a)(λ−b)λ

(µ−1)2

−(λ−b)2λ
µ−1

−(µa−λc−a)(λ−b)λ
(µ−1)2

(λ−b)2
(µ−1)2

 , (60)

Note that µ 6= 1, as det η2 6= 0.
The WDVV system in first-order form also admits a non-local Hamilto-

nian operator of Ferapontov type A2
1 that is compatible with A2

2. We present
the special case where µ = 2, as the general case has an expression that is
too big to be shown here. We have

gij =

2bλ− a2λ− b2 − 5 a− abλ− bc+ cλ 2b− b2λ− c2 − 2λ

a− abλ− bc+ cλ 2b− b2λ− c2 − 2λ c(acλ−2b2λ+4b−c2−λ)
b−λ

2b− b2λ− c2 − 2λ c(acλ−2b2λ+4b−c2−λ)
b−λ

δ
(b−λ)2

,

 (61)

where

δ = λ(b2(4b−3c2)−2ac(2b− c2) + 8b− c2)− (4b− c2)(2b− c2)−4− (ac− b2)2

and the value of the constants in the non-local part is α = 1, β = 0, γ = λ.

The case η3. In this case we have

φ(a, b, c) =
b2 − ac+ bc− 2b+ 1

a
. (62)

There exists a unique third-order HHO A3
2, it is generated by the following

metric of type g(4) [34, 33]:

hij =

(1− b− c)(b+ c− 3) a(b+ c− 2) + 1 a(b+ c− 2)
a(b+ c− 2) + 1 −a2 −a2

a(b+ c− 2) −a2 −a2

 . (63)
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We also have an operator A3
1 of Ferapontov type (18). It is determined

by the metric

gij =

 −a2 − 2ab 2a− ab− ac− b2 4b− b2 − 2bc− 3

2a− ab− ac− b2 4b− b2 − 2bc− 3 4ac−ac2−b3−b2c+2b2−b
a

4b− b2 − 2bc− 3 4ac−ac2−b3−b2c+2b2−b
a

δ
a

 , (64)

where δ = ac2 − 4ac − 2b2c + 4b2 − 2bc2 + 8bc − 8b − 2c + 4. The nonlocal
part of the operator is determined by α = 0, β = 1, γ = 1.

Furthermore, the Schouten bracket vanishes: [A3
1, A

3
2] = 0.

The case η4. In this case the function φ(a, b, c)

φ(a, b, c) =
µb2 − µac+ λc2 − 1

λb
. (65)

There exists a third-order HHO which is in the class g(3) [34, 33]. It is
determined by the metric

hij =

 b2 + µ bµ(λc− µa) −µλb2

bµ(λc− µa) λ+ a2 − λc(2µa− λc) λb(µa− λc)
−µλb2 λb(µa− λc)) b2

 . (66)

Below we provide the metric gij that defines A4
1:

gij =
λ

µ

−a2µ− b2λ− 4µλ −b(aµ+ cλ) −b2µ− c2λ− 1

−b(aµ+ cλ) −b2µ− c2λ− 1 c(acµ−2b2µ−c2λ+1)
b

−b2µ− c2λ− 1 c(acµ−2b2µ−c2λ+1)
b

δ
b2

 , (67)

where δ = 2ab2cλ−a2c2λ+2ac3µ−2acµλ−b4λ−3b2c2µ−2b2µλ−c4λ+2c2−λ
and the values of constants in (18) are α = µ, β = 0, γ = λ. Also in this case
[A4

1, A
4
2] = 0 for any λ, µ = ±1.

4.3 An example: equation of flat centroaffine metrics

There is another significant example provided in [24] in the case N = 3:

η =

1 0 0
0 0 1
0 1 0

 . (68)

23



This particular example has an interesting geometric interpretation as the
equation of flat centroaffine metrics for surfaces in R3 [28]. The WDVV
equation takes the form

fxxxfyyy − fxxyfxyy = 1, (69)

and the system in first-order form reads:

at = bx,

bt = cx,

ct =

(
bc+ 1

a

)
x

.

(70)

The above system admits a third-order HHO of type g(4) which is again
completely determined by a metric hij:

hij =

 c2 −1 −ac
−1 0 0
−ac 0 a2

 . (71)

and has the form:

A2 =

 0 −∂3
x 0

−∂3
x 0 −∂2

x
c
a
∂x

0 −∂x ca∂
2
x

1
2
(∂2
x

1
a2
∂x + ∂x

1
a2
∂2
x)

 . (72)

For this case we also have a first-order nonlocal operator A1 which is
determined by metric gij:

gij =

 2ab ac+ b2 2bc+ 3

ac+ b2 2bc+ 3 ac2+b2c+b
a

2bc+ 3 ac2+b2c+b
a

2c(bc+1)
a

 , (73)

and its tail vector α = γ = 0, β = −1. The operator is compatible with
A2: [A1, A2] = 0. This turns the equation of flat centroaffine metrics, in the
form of a first-order quasilinear system of PDEs (70), into a bi-Hamiltonian
system.

Example 3 in [34] is just another form of (69), after transforming η(2)

into the identity matrix (µ = 1). Also this case is bi-Hamiltonian by means
of the third-order HHO in Example 3 and the first-order nonlocal operator
presented in [14].
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Remark 7. Ferapontov operators of type (18) can be transformed into local
operators by a reciprocal transformation if α = γ = 0 [32]. The fact that in
the above case the first-order operator is localizable does not contradict the
fact that, according to [51], it is not localizable by equivalence transformations
of WDVV. Indeed, in [30] a transformation between (7) and the above (69)
which can also be read as a reciprocal transformation between the first-order
systems is provided. It should not be a difficult exercise to show that such a
transformation brings the local first-order HHO of (7) into the above non-
local first-order HHO.

4.4 Remarks on the generic case

A computation in the generic case is possible. In particular, if N = 3 a
generic choice of the matrix η leads to a first-order system of the form (41).
We can prove (by computer) that if η11 6= 0 the generic metric of the third-
order operator is of type g(3), while if η11 = 0 it is of type g(4) (see [33]). Such
computations show that, at least in the case N = 3, the third-order operators
exist independently, being the first-order system generated by the algorithm
or as a relation between the coordinates f involving the WDVV equation.
This fact suggests that a natural framework for characterizing the existence
of a third-order HHO might be that of [2], where all conserved densities of
the first-order system (in our case 5) are used to identify the system with a
projective variety.

It is interesting to observe that our examples do not cover the whole range
of Monge metrics that are classified in [33], as the most generic types g(1)

and g(2). However, strictly speaking an occurrence of a metric of the latter
classes in first-order WDVV systems cannot be excluded.

It is interesting to observe that, when N = 3, the first-order WDVV
systems produced by the Algorithm are always of the reducible type (43),
according with the terminology in [1]. In the same paper it is proved that
linearly degenerate reduced systems are semi-Hamiltonian. In our case we
proved that such systems admit a third-order HHO, and hence they are
linearly degenerate (see [35] and Section 6), but we prove that the systems
are bi-Hamiltonian (which, of course, imply semi-Hamiltonianity).
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5 WDVV equations in higher dimensions

We still have no results of invariance of the bi-Hamiltonian structure for
higher dimensions. However, there are strong indications that third-order
HHOs exist for both normal forms η(1) and η(2) and all values of N , due to
their existence for N = 4 and N = 5. In one case, the third-order HHO is
paired with a first-order local HHO and we have a bi-Hamiltonian pair. We
present the main results in this section.

We shall remark that at the moment there exists only one first-order
operator for N = 4 and η = η(1): it was found in [31]. For N = 4 and
η = η(2) and N = 5 we cannot exhibit any first-order operator (local or
non-local) because the properties that we used in the case N = 3 [11] do not
hold in higher dimensions. It is however reasonable to conjecture that we will
continue to have first-order operators, local in the case η = η(1) and nonlocal
of type (18) in the case η = η(2), and that they will form bi-Hamiltonian
pairs with the corresponding (conjectural) third-order operators.

5.1 The case N = 4

In the case N = 4 for long time only a first-order local HHO was known [31]
in the case η(1) (14). A few years ago, a third-order HHO compatible with
the known first-order HHO was found by a complicated procedure [55], later
simplified in [35] by means of equations (33).

Here we will present a third-order HHO for Dubrovin’s normal form
η(2). This particular form of η generates the following WDVV system (here
(t, x, y, z) = (t1, t2, t3, t4)):

µfyyzfzzz + 2fyyzfxyz − fyyyfxzz − fxyyfyzz − µf2
yzz = 0,

fxxyfyzz − fxxzfyyz − µfzzzfxyz + fzzz + fxyyfxzz + µfxzzfyzz − f2
xyz = 0,

fxxyfyyz − fxxzfyyy + µfyyzfxzz − µfxyzfyzz + fyzz = 0,

fxxyfxzz − µfxxzfzzz − 2fxxzfxyz + fxxxfyzz + µf2
xzz = 0,

fxxzfxyy + µfxxzfyzz − fyyzfxxx − µfxzzfxyz + fxzz = 0,

fxxyfxyy + µfxxzfyyz − fxxxfyyy − µf2
xyz + 2fxyz = 0.

(74)

The above overdetermined system of non-linear PDEs can be rewritten in the
form of two commuting hydrodynamic-type system using the identifications
a = fxxx, b = fxxy, c = fxxz, d = fxyy, e = fxyz, f = fxzz. One of the systems
is:
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ay = bx, by = dx, cy = ex,

dy =

(
bcdfµ2 − bce2µ2 − c2deµ2 + ae3µ2 + b2cdµ−

δ

+
−badeµ+ 2bceµ+ c2dµ− 3ae2µ+ bad+ cfµ+ 2ae

δ

)
x

,

ey =

(
−c2feµ2 + af2eµ2 + bafeµ+ c3dµ−

δ

+
−cadfµ− cae2µ+ c2fµ− af2µ− baf + 2cae

δ

)
x

,

fy =

(
−c2e2µ2 + afe2µ2 + bc2dµ− cadeµ+ 2c2eµ− 2afeµ+ cad+ af

δ

)
x

,

(75)

where δ = −c3µ2 + cafµ2 + bcaµ − a2eµ + a2. As an example, the right-
hand side of the fourth equation comes from the compatibility condition
dy = (fyyy)x and the expression of fyyy in terms of a, . . . , f through the
system (74).

The above quasilinear system of first-order PDEs admits a unique third-
order HHO determined by the following Monge metric hij through the equa-
tions (33) (only entries with i < j are shown):

h11 = d2 h12 = e2µ− 2e

h13 = 2d(−eµ+ 1) h14 = −ad+ ceµ− c
h15 = µ(b/µ− be+ cd− efµ+ f) h16 = e2µ2 − 2eµ+ 1

h22 = 2c(eµ− 1) h23 = −beµ+ b− cdµ− efµ2 + fµ

h24 = c2µ h25 = −aeµ+ a− bcµ− cfµ2

h26 = 2cµ(eµ− 1) h33 = 2µ(bd+ dfµ+ e2µ/2− e+ 1/µ)

h34 = aeµ− a− bcµ− cfµ2 h35 = µ(ad+ b2 + 2bfµ− ceµ+ c+ f2µ2)

h36 = µ(b− beµ− cdµ− efµ2 + fµ) h44 = a2

h45 = −2acµ h46 = c2µ2

h55 = µ(2ab+ 2afµ+ c2µ) h56 = µ(−aeµ+ a− bcµ− cfµ2)

h66 = 2cµ2(eµ− 1)

Remark 8. We have 2 commuting quasilinear first-order systems of PDEs
for each choice of η, and it is not automatically true that if one of them
is bi-Hamiltonian the other will be bi-Hamiltonian with respect to the same
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operators. However, this is true in the case η(1) and N = 4 [55]. More gener-
ally, it is known [64, 63] that if a diagonalizable quasilinear first-order system
of PDEs is Hamiltonian with respect to a first-order HHO, then other com-
muting diagonalizable systems will be Hamiltonian with respect to the same
operator. Even if this statement carries on to our non-diagonalizable first-
order WDVV systems (see Section 6), at the moment we can only conjecture
that this extends to the compatible third-order operators.

5.2 The case N = 5

This case is completely open: no Hamiltonian formulation was known until
now. We have been able to find one new third-order Hamiltonian operator for
the normal form η(1) (14). The first-order WDVV systems are 10-component
systems; one of them (found using t2 and t3 in the Algorithm) admits one
third-order HHO (up to a constant factor) that is defined by the following
Monge metric hij (only nonzero entries are shown):

h11 = −u7 h12 = −2u6u7

h13 = (u6)2 + 2u9 h14 = −2u7

h15 = −(u6)2 h16 = u2u7 − u3u6 + u5u6 + u8

h17 = u1u7 + u2u6 + u4 h18 = −2u6

h19 = −u3 h110 = −1

h22 = 2u3u7 − 2u5u7 − (u6)2 + 2u9 h23 = −u2u7 − u3u6 + u5u6 + u8

h24 = −2u6 h25 = u2u7 + u3u6 − u5u6 + u8

h26 = u1u7 + u2u6 + (u3 − u5)2 + u4 h27 = u1u6 − u2u3 + u2u5

h28 = u3 − 2u5 h29 = −u2

h33 = 2u2u6 + 2u4 h34 = −u3

h35 = −2u2u6 h36 = −u1u6 − u2u3 + u2u5

h37 = (u2)2 h38 = −2u2

h39 = −u1 h44 = −2

h46 = u2 h47 = u1

h55 = 2u2u6 h56 = u1u6 + u2u3 − u2u5

h57 = −(u2)2 h58 = u2

h66 = 2u1u3 − 2u1u5 − (u2)2 h67 = −2u1u2

h68 = u1 h77 = −(u1)2
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For the second normal form η(2) we were able to find a third order operator
as well, with the simplifying assumption µ = 1 (again, we used t2 and t3 in
the Algorithm). Indeed, the computation is too hard for the servers that
we can use if we allow µ to be a generic non-zero constant. The operator is
defined by the following Monge metric hij (again, we present only non-zero
entries with i ≤ j):

h1 1 = (u7)2 h1 2 = 2u7u6

h1 3 =−(u6)2+(u9)2−2u9 h1 4 =−(2u9−2)u7

h1 5 = (u6)2 h1 6 =−u2u7+u3u6−u5u6+u8u9−u8

h1 7 =−u1u7−u2u6+u4u9−u4 h1 8 =−(2u9−2)u6

h1 9 =−u10u9−u3u9+u4u7+u6u8+u10+u3 h1 10 = (u9)2−2u9+1

h2 2 =−2u3u7+2u5u7+(u6)2+(u9)2−2u9 h2 3 = u2u7+u3u6−u5u6+u8u9−u8

h24 =−2u6u9−2u7u8+2u6 h2 5 =−u2u7−u3u6+u5u6+u8u9−u8

h2 6 =−u1u7−u2u6−(u3)2+2u3u5+ h2 7 =−u1u6+u2u3−u2u5+u4u8

+u4u9−(u5)2+(u8)2−u4

h2 8 = u9(u3+u10−2u5)+u4u7−u6u8 h2 9 = u8(u5−u10−2u3)−u2u9+u4u6+u2

+u10−u3+2u5

h2 10 = (2u9−2)u8 h3 3 =−2u2u6+2u4u9−2u4

h3 4 =−u10u9−u3u9−u4u7+u6u8+u10+u3 h3 5 = 2u6u2

h3 6 = u1u6+u2u3−u2u5+u4u8 h3 7 =−(u2)2+(u4)2

h3 8 =−2u2u9−2u4u6+2u2 h3 9 =−u1u9−u10u4+u2u8−u3u4+u1

h3 10 = (2u9−2)u4 h4 4 = 2u10u7+2u3u7+(u6)2+(u9)2−2u9+2

h4 5 =−2u8u6 h4 6 =−u10u8+u2u9−2u3u8−u4u6+u5u8−u2

h4 7 = u1u9−u10u4+u2u8−u3u4−u1 h4 8 = 2u10u6+u2u7+u3u6+u5u6+u8u9−u8

h4 9 = u1u7+(u10)2+2u10u3+u2u6+ h4 10 =−u10u9−u3u9−u4u7−u6u8+u10+u3

+(u3)2−u4u9−(u8)2+u4

h5 5 =−2u2u6+(u8)2 h5 6 =−u1u6−u2u3+u2u5+u4u8

h5 7 = (u2)2 h5 8 =−u10u8+u2u9+u4u6−u5u8−u2

h5 9 =−2u8u2 h5 10 = (u8)2

h6 6 =−2u1u3+2u1u5+(u2)2+(u4)2 h6 7 = 2u2u1

h6 8 = u1u9−u10u4−u2u8+u3u4−2u4u5−u1 h6 9 =−2u1u8−2u2u4

h6 10 = 2u8u4 h7 7 = (u2)2

h7 8 =−2u4u2 h7 9 =−2u4u1
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h7 10 = (u4)2 h8 8 = (u10)2+2u10u5+2u2u6−2u4u9+(u5)2+2u4

h8 9 = u1u6+2u10u2+u2u3+u2u5+u4u8 h8 10 =−u10u8−u2u9−u4u6−u5u8+u2

h9 9 = 2u1u10+2u1u3+(u2)2+(u4)2 h9 10 =−u1u9−u10u4−u2u8−u3u4+u1

h10 10 = 2u4u9+(u8)2−2u4

6 Conclusions: projective geometry of WDVV

systems

The results that we achieved so far have very interesting implications in
terms of projective geometry that we will discuss in this Section (see also the
Introduction).

In a recent paper [35] it was proved that any hydrodynamic-type system
that has a third-order homogeneous Hamiltonian operator has a rich geomet-
ric structure. The results transfer to first-order WDVV systems. Indeed, in
the case N = 3 we have:

1. There exists a quadratic line complex of lines in the projective space
P3 associated with the first-order WDVV system. The construction is
a straightforward generalization of what we have written in the Intro-
duction.

2. The first-order WDVV system defines a linear line congruence in the
projective space P4. This is a 3-parameter family of lines in the pro-
jective space P4. Again, this is shown in the Introduction.

3. The first-order WDVV system is linearly degenerate and belongs to the
Temple class.

4. The first-order WDVV system is non-diagonalizable.

5. The first-order WDVV system admits a Hamiltonian and a momentum
with respect to the third-order HHO; their expressions are local after a
potential substitution bix = ui and are given by explicit formulae [35].

6. The first-order WDVV systems are equivalent to the system (8) using
a projective reciprocal transformation of the type (26).
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Let N = 4, 5. Then, the above properties (with the exception of equiva-
lence) hold for the first-order WDVV systems that we considered in Section 5
for the normal forms η(1), η(2).

Several considerations can be made in view of future research.

Conjecture: every WDVV system is associated with a quadratic
line complex and a linear line congruence. This is just a rephras-
ing of the conjecture that every first-order WDVV system admits a local
third-order HHO. However, the Conjecture put in this way suggests that
WDVV equations have a projective-geometric interpretation that is yet to
be uncovered. The generalization to the Oriented Associativity equations
for F -manifolds is an active research topic (see e.g. [6]) and quadratic line
complexes occur also in that case [56] (see also [53]). A future role of such
objects besides the bi-Hamiltonian structure that they provide is foreseeable.

Projective equivalence of WDVV systems. The last statement in the
above list implies that, in the case N = 3, if our WDVV systems admit
a third-order homogeneous operator they should in principle be all equiv-
alent. In practice, it is extremely difficult to solve the equations for the
unknown transformation. An explicit transformation between the WDVV
equations (7) and (69) in [31] shows the computational difficulties. It is
preferable to recompute the operators for any specific presentation of the
WDVV system. Note that the transformation (26) is not an invariance trans-
formation of WDVV equations. In principle, the equivalence does no longer
hold in higher dimensions.

First-order operators and projective geometry. First-order local or
non-local HHOs do not have a projective-geometric interpretation yet. How-
ever, we expect that those that are compatible with third-order HHOs will
have a projective-geometric role. It is an interesting remark the fact that the
metric of the first-order operators that we found have rational coefficients
(in upper indices!) and the denominator is always the square root of the
determinant of the Monge metric. Such a determinant is a perfect square,
and its zero locus is the Kümmer surface of the underlying quadratic line
complex, see [34, 33].
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Projective geometry in the original WDVV setting. The projective-
geometric structures that we found so far might be transported in the ‘initial’
setting of WDVV. A theoretical framework for the Hamiltonian formalism
for general PDEs has already been developed in [44]. In that framework, vari-
ational bivectors for the WDVV equation in the non-evolutionary form (7)
have been found (although with an explicit dependence on the independent
variables) [45]. An understanding of the role of quadratic line complexes
and line congruences in the initial formulation might shed new light on the
relationship between WDVV equations and projective-geometric invariants.
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