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Abstract

The aim of this article is to classify pairs of first-order Hamilto-
nian operators of Dubrovin-Novikov type such that one of them has
a non-local part defined by an isometry of its leading coefficient. An
example of such bi-Hamiltonian pair was recently found for the con-
stant astigmatism equation. We obtain a classification in the case of 2
dependent variables, and a significant new example with 3 dependent
variables that is an extension of a hydrodynamic type system obtained
from a particular solution of the WDVV equations.

1 Introduction

The theory of homogeneous first order differential-geometric Poisson brack-
ets was established by B.A. Dubrovin and S.P. Novikov in 1983 [3] in the
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framework of the Hamiltonian formalism for PDEs. Such Poisson brackets
are defined by local differential operators A = (Aij) of the type

Aij = gij(u)∂x + Γijk (u)ukx, (1)

where ui = ui(t, x) are field variables, i = 1, . . . , n depending on two in-
dependent variables t, x. The operator A yields a Poisson bracket between
densities

{F,G}A =

∫
δF

δui
Aij

δG

δuj
dx

if and only if, in the non degenerate case det(gij) 6= 0, gij is symmetric,
Γijk = −gisΓjsk are Christoffel symbols of the Levi–Civita connection of gij
(the inverse of gij), and the tensor gij(u) is a flat contravariant metric.

The theory of compatible pairs of such Hamiltonian operators was devel-
oped later in a series of publications (see the review paper [10]). We recall
that two Hamiltonian operators A, B, are said to be compatible if A+λB is
a Hamiltonian operator for every λ ∈ R. The main application of compatible
pairs A0, B0 of homogeneous Hamiltonian operators of the type (1) is the
integrability of the corresponding quasilinear systems of PDEs of the form

uit = V i
j (u)ujx,

which is provided by Magri’s Theorem [8] when the above system of PDEs
is bi-Hamiltonian:

uit = V i
j (u)ujx = Aij0

δH0

δuj
= Bij

0

δH̃0

δuj
, (2)

where Bij
0 = g̃ij(u)∂x + Γ̃ijk (u)ukx and

H0 =

∫
h0(u)dx, H̃0 =

∫
h̃0(u)dx,

where h0(u) and h̃0(u) are hydrodynamic conservation law densities.
In some cases, bi-Hamiltonian hydrodynamic type systems can be con-

sidered as the dispersionless limit of integrable bi-Hamiltonian systems, con-
taining higher order derivatives:

uit = Aij
δH

δuj
= Bij δH̃

δuj
,
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where

H =

∫
h(u,ux,uxx, ...)dx, H̃ =

∫
h̃(u,ux,uxx, ...)dx

and Aij, Bij are non-homogeneous differential operators of arbitrary orders.
In the dispersionless limit (∂x → ε∂x, ∂t → ε∂t, ε → 0) we have Aij →
Aij0 , B

ij → Bij
0 and h(u,ux,uxx, . . .)→ h(u), h̃(u,ux,uxx, . . .)→ h̃(u).

A large number of examples of the above bi-Hamiltonian systems are
known. They can be generated from solutions of the WDVV equations as
Frobenius manifolds, for example [2].

In our paper, we consider an alternative class of bi-Hamiltonian systems.
According with an observation made by B.A. Dubrovin and S.P. Novikov,
one can introduce the so-called flat coordinates ak(u) such that the first
local Hamiltonian operator Aij0 takes the constant form, i.e. Aij0 = ηij∂x,
where ηij is a symmetric constant non degenerate matrix. In this case, the
flat coordinates ak play the role of “Liouville coordinates” for the second
local Hamiltonian operator Bij

0 , i.e. we have Bij
0 = Γ̃ji∂x + ∂xΓ̃

ij, where
Γ̃ij are a set of functions such that the second metric tensor is given by
g̃ij(a) = Γ̃ij(a) + Γ̃ji(a), and (Γ̃ij),k ≡ Γ̃ijk = −g̃isΓ̃jsk. Here we denote
(Γ̃ij),k ≡ ∂Γ̃ij/∂ak. So, we can rewrite the bi-Hamiltonian hydrodynamic
type system (2) as

ait = ηij∂x
δH

δaj
= (Γ̃ji∂x + ∂xΓ̃

ij)
δH̃

δaj
.

It is well-known that the class of local first-order homogeneous Hamilto-
nian operators can be extended to include non-local terms. A widely studied
extension is that of Mokhov–Ferapontov and Ferapontov operators (see [5]
and references therein), which is again homogeneous. Later E.V. Ferapontov
introduced and studied (see [4]) a non-homogeneous, non-local extension of
the form

B = g̃ij∂x + Γ̃ijk u
k
x + εf i∂−1x f j, (3)

where ε is a parameter and (f j) is a vector field, f j = f j(u), that is an
infinitesimal isometry of g̃ij. All these Hamiltonian operators are applicable
for integrable as well as for non-integrable systems. In our paper we deal
with bi-Hamiltonian structures, which is a significant part in theory of inte-
grable systems. Our motivating example is given by the constant astigmatism
equation

utt +

(
1

u

)
xx

+ 2 = 0, (4)

3



whose bi-Hamiltonian structure, after introducing the variable ut = vx and
rewriting the equation as the non-homogeneous quasilinear system

ut = vx, vt = −
(

1

u

)
x

− 2x, (5)

was found in [14] to be

A =

(
0 1
1 0

)
∂x, (6)

B =

(
2u 0
0 2

u

)
∂x +

(
1 0
0 − 1

u2

)
ux +

(
0 −1
1 0

)
vx +

(
0 0
0 2

)
∂−1x . (7)

In this paper we investigate the following problem: find all bi-Hamiltonian
pairs A, B where

A =

(
0 1
1 0

)
∂x, Bij = Γji∂x + ∂xΓ

ij + εf i∂−1x f j, (8)

where (f i) is an infinitesimal isometry of gij = Γji + Γij (here ε is an arbi-
trary parameter). The classification is made with respect to the action of the
group of local diffeomorphisms of the dependent variables. We observe that
isometries of the leading coefficients have been used in a different classifica-
tion problem of pairs of compatible local first-order homogeneous operators
A0, B0 in [12].

We give a complete solution to the above problem in the case of n = 2
dependent variables. The solution of the system of conditions in the case
n = 3 is more complicated and will be dealt with in the future. However,
we provide here an interesting new example: the “isometric” extension of a
hydrodynamic type system obtained as a solution of the WDVV equations.
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port of Istituto Nazionale di Fisica Nucleare through its IS ‘Mathematical
Methods in Non-Linear Physics’ https://web.infn.it/CSN4/index.php/
it/17-esperimenti/165-MMNLP-home.
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2 Preliminaries

Let us consider the homogeneous operator of the first order:

Aij0 = gij∂x + Γijk u
k
x. (9)

It is well-known [3] that the conditions necessary and sufficient for A0 to
be Hamiltonian are, in the non degenerate case det(gij) 6= 01, that gij is
symmetric, its inverse (gij) is a flat pseudo-Riemannian metric and Γijk =

−gjpΓipk are the Christoffel symbols of the Levi-Civita connection of gij.
Let us consider two first-order homogeneous Hamiltonian operators A0

and B0 = g̃ij∂x + Γ̃ijk u
k
x. The pair of metrics g and g̃ is said to be almost

compatible if for every linear combination gλ := g + λg̃ we have

Γijλ,k = Γijk + λΓ̃ijk ; (10)

the pair of metrics g and g̃ is said to be compatible if and only if, in addition
to (10), the Riemann curvature tensor Rλ of the metric g + λg̃ splits as the
sum of the Riemann curvature tensors R of g and R̃ of g̃:

Rij
λ,kl = Rij

kl + λR̃ij
kl.

It can be proved that the Hamiltonian operators A0, B0 are compatible,
i.e. A0 + λB0 is a Hamiltonian operator for every λ, if and only if the
corresponding metrics are compatible [11]. In this case we say A0, B0 to be
a bi-Hamiltonian pair.

Now, let us consider a non-local non-homogeneous operator of the form

Bij = gij∂x + Γijk u
k
x + cuix∂

−1
x ujx + εf i∂−1x f j,

where c, ε are constants and (f i) is a vector field, f i = f i(u). In [4] it is
shown that B defines a Poisson bracket if and only if the following conditions
are satisfied:

1. gij is a pseudo-Riemannian metric and gij is compatible with the con-
nection with Christoffel symbols Γijk = −gjpΓipk ;

2. the connection Γijk is symmetric and it has constant curvature c;

1From now on all operators are assumed to have a non degenerate leading term.
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3. (f i) is an infinitesimal isometry of gij, or, equivalently, ∇if j+∇jf i = 0;

4. the cyclic condition

f j∇ifk+ < cyclic >= 0

is fulfilled.

It is clear that the last condition is trivially satisfied for 2-dimensional
spaces.

Remark 1. We observe that if we require c = 0 then the operator B is of
the form

B = B0 + εf i∂−1x f j,

where B0 is a local homogeneous first-order Hamiltonian operator.

Motivated by the example of the constant astigmatism equation (4), in
the two-component case (n = 2) we consider pairs of Hamiltonian operators
A, B, where

A = ηij∂x =

(
0 1
1 0

)
∂x, (11a)

Bij = B0 + f i∂−1x f j = gij∂x + Γijk u
k
x + f i∂−1x f j. (11b)

The compatibility conditions of the above operators are given in the following
theorem.

Theorem 2. The above Hamiltonian operators A, B form a bi-Hamiltonian
pair if and only if

1. A is compatible with B0;

2. (f i) is an isometry of the leading terms of both operators A and B.

Proof. Indeed, A is clearly a Hamiltonian operator. Moreover, the operator

λA+B = (ληij + gij)∂x + Γijk u
k
x + f i∂−1x f j (12)

should be Hamiltonian for every λ. This is equivalent to the requirement
that the operator

(ληij + gij)∂x + Γijk u
k
x (13)

is Hamiltonian for every λ, which is the first condition of the above statement.
The second condition comes from the fact that (f i) must be an isometry of
the leading metric coefficient ληij + gij for every λ ∈ R.
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It is easy to realize that the Hamiltonian operators A and B0 are com-
patible if and only if

Γijk = Γijλ,k, (14a)

Rij
kl = 0 = Rij

λ,kl, (14b)

where gijλ = gij + ληij and Γijk , Rij
kl are the Christoffel symbols and the

Riemannian curvature tensor of g, respectively. These are the equations that
will be used in order to produce a classification of the pairs A, B when n = 2.

3 The case n = 2: classification

In the case n = 2 we can provide a classification of the bi-Hamiltonian pairs
A, B as in (8) or (11). We denote the dependent variables by u and v.

We stress that working with a pair of the form (8) means that we used flat
coordinates of the first operator in order to obtain it in the form Aij = ηij∂x,
where (ηij) is a constant non degenerate symmetric matrix. Then, by linear
transformations of the dependent variables, we further reduced (ηij) to the
‘antidiagonal identity’ form in (8). The only remaining coordinate freedom
consists in translations and scalings, and they will be used to reduce the
number of parameters in the canonical forms.

An immediate observation is that the vector field f = (f i) must be a
linear combination of the following isometries of ηij:

1. f1 = ∂u,

2. f2 = ∂v,

3. f3 = u∂u − v∂v,

so that f = a1f1 + a2f2 + a3f3. If a3 6= 0, then by translating u and v
(this will preserve ηij) we can reduce to the case f = u∂u−v∂v. Otherwise, if
a3 = 0 then by complex scaling u 7→ cu, v 7→ v

c
we can transform the isometry

f to f = ∂u + ∂v, or f = ∂u. This shows that a complete classification of
compatible pairs A and B (up to transformations preserving η) reduces to
the three distint cases

1. f = ∂u,
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2. f = ∂u + ∂v,

3. f = u∂u − v∂v.

Our strategy is the following: we find the most general form of metric
leading coefficient g of B for which the selected vector field f is an isometry,
then we apply Theorem 2. We will check the compatibility of the local
operators A and B0 by the compatibility of the corresponding metric leading
coefficients.

3.1 Case f = ∂u

In this case the metric can be written as gij = gij(v).

Theorem 3. If f = ∂u, the metric gij in the operator B is one of the
following:

gij1 =

(
α
v

β
β v

)
α 6= β2,

gij2 =

(
g11(v) g12(v)
g12(v) 0

)
g12(v) 6= 0,

gij3 =

(
0 β
β v

)
β 6= 0,

where g11(v) and g12(v) are arbitrary functions.

Obviously, a similar statement holds for f = ∂v by simple change of
variable.

3.2 Case f = ∂u + ∂v

The solutions of the conditions are presented in the following Theorem.

Theorem 4. If f = ∂u + ∂v then gij is one of the following

gij4 =

(
f(−u+ v) −f(−u+ v) + β

−f(−u+ v) + β f(−u+ v)

)
β 6= 0,

where f = f(−u+ v) is an arbitrary non-constant function;

gij5 =

(
−u+ v β
β 0

)
β 6= 0,
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gij6 =

(
α β
β γ

)
αγ 6= β2.

3.3 Case f = u∂u − v∂v
Here the coefficients of gij depend, in principle, on both variables u, v. Solv-
ing the conditions yields the following results.

Theorem 5. If f = u∂u − v∂v the metric gij is one of the following

gij7 =

(
αuv+ε
v2

β
β 0

)
β 6= 0,

gij8 =

(
u
v

β
β αv

u

)
α 6= β2,

gij9 =

(
α
F

β
β F

)
α 6= β2,

with

F =
γuv + ε+

√
(γ2 − 4α)u2v2 + 2γεuv + ε2

2u2
. (15)

4 Hierarchies in 2 components

It is well-known that a bi-Hamiltonian pair A, B defines a sequence of Poisson
commuting conserved quantities Hk by means of Magri’s recursion [8]:

Aij
δHk+1

δuj
= Bij δHk

δuj
. (16)

where H1, H2 are densities of conservation laws for the bi-Hamiltonian system
of PDEs associated with the pair. The first density is usually taken as a
Casimir of one of the operators, i.e. a density that is in the kernel of one of
the operators. The sequence of systems of PDEs

uitk = Aij
δHk

δuj
(17)

is then the integrable hierarchy ; the proper integrable system is identified as
the first non-trivial system in the hierarchy.

It is possible to give a more explicit construction of the integrable hierar-
chies generated by a bi-Hamiltonian pair using recursion operators defined as
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R = B ◦A−1. This implies that there is no more need to solve Magri’s recur-
sion. In our case it is possible to give an explicit form of recursion operators
associated with the bi-Hamiltonian pairs that we found in our classification
in the case n = 2. In the following Section we will show by means of an ex-
ample how to construct the integrable system which is the starting element
of the integrable hierarchy.

1. Case gij1 . We have (α is an arbitrary constant)

B =

(
α
v
∂x − α

2v2
vx + ∂−1x β∂x + 1

2
ux

β∂x − 1
2
ux v∂x + 1

2
vx

)
and the recursion operator is

R =

(
β∂x + 1

2
ux

α
v
∂x − α

2v2
vx + ∂−1x

v∂x + 1
2
vx β∂x − 1

2
ux

)
∂−1x

2. Case gij2 . We have (functions g11(v) and g12(v) are arbitrary):

B =

(
g11(v)∂x + 1

2
d
dv
g11(v)vx + ∂−1x g12(v)∂x + d

dv
g12(v)vx

g12(v)∂x 0

)
then, the recursion operator is

R =

(
g12(v)∂x + d

dv
g12(v)vx g11(v)∂x + 1

2
d
dv
g11(v)vx + ∂−1x

0 g12(v)∂x

)
3. Case gij3 . We have

B =

(
∂−1x β∂x + 1

2
ux

β∂x − 1
2
ux v∂x + 1

2
vx

)
and the recursion operator

R =

(
β∂x + 1

2
ux ∂−1x

v∂x + 1
2
vx β∂x − 1

2
ux

)
∂−1x

4. Case gij4 (the function f(γ) is arbitrary). For simplicity, let us substi-
tute γ := −u+ v, then the operator is

B =

(
f(γ)∂x + f ′(γ)

2
(vx − ux) + ∂−1x (−f(γ) + c1)∂x + f ′(γ)

2
(ux − vx) + ∂−1x

(−f(γ) + c1)∂x + f ′(γ)
2

(ux − vx) + ∂−1x f(γ)∂x + f(γ)
2

(vx − ux) + ∂−1x

)
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and the recursion operator is

R =

(
(−f(γ) + c1)∂x + f ′(γ)

2
(ux − vx) + ∂−1x f(γ)∂x + f ′(γ)

2
(vx − ux) + ∂−1x

f(γ)∂x + f(γ)
2

(vx − ux) + ∂−1x (−f(γ) + c1)∂x + f ′(γ)
2

(ux − vx) + ∂−1x

)
∂−1x

5. Case gij5 . The operator is

B =

(
(−u+ v)∂x − 1

2
ux + 1

2
vx + ∂−1x β∂x + 1

2
vx + ∂−1x

β∂x − 1
2
vx + ∂−1x ∂−1x

)
and the recursion operator is

R =

(
β∂x + 1

2
vx + ∂−1x (−u+ v)∂x − 1

2
ux + 1

2
vx + ∂−1x

∂−1x β∂x − 1
2
vx + ∂−1x

)
∂−1x

6. Case gij6 . The operator is (β and γ are arbitrary constants)

B =

(
α∂x + ∂−1x β∂x + ∂−1x
β∂x + ∂−1x γ∂x + ∂−1x

)
and the recursion operator is

R =

(
β∂x + ∂−1x α∂x + ∂−1x
γ∂x + ∂−1x β∂x + ∂−1x

)
∂−1x

7. Case gij7 . We have (β and γ are arbitrary constants)

B =

(
αuv+ε
v2

∂x + α
2v
ux +

(
αu
2v2
− αuv+ε

v3

)
vx + u∂−1x u β∂x − α

2v
vx − u∂−1x v

β∂x + α
2v
vx − v∂−1x u v∂−1x v

)
and we obtain the recursion operator:

R =

(
β∂x − α

2v
vx − u∂−1x v αuv+ε

v2
∂x + α

2v
ux +

(
αu
2v2
− αuv+ε

v3

)
vx + u∂−1x u

v∂−1x v β∂x + α
2v
vx − v∂−1x u

)
∂−1x .

8. Case gij8 . Let us consider the following (c is an arbitrary constant):

B =

(
u
v
∂x + 1

2v
ux − u

2v2
vx + u∂−1x u β∂x + α

2u
ux − 1

2v
vx − u∂−1x v

β∂x − α
2u
ux + 1

2v
vx − v∂−1x u αv

u
∂x − αv

2u2
ux + α

2u
vx + v∂−1x v

)
.

The recursion operator is

R =

(
β∂x + α

2u
ux − 1

2v
vx − u∂−1x v u

v
∂x + 1

2v
ux − u

2v2
vx + u∂−1x u

αv
u
∂x − αv

2u2
ux + α

2u
vx + v∂−1x v β∂x − α

2u
ux + 1

2v
vx − v∂−1x u

)
∂−1x .

9. Case gij9 . The expressions of the Christoffel symbols make the Hamil-
tonian operator and the recursion operator too big to be shown here.
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5 The constant astigmatism equation

In this section we show how to construct an integrable system underlying one
of the bi-Hamiltonian pairs that we found so far. The example contains the
constant astigmatism equation as a particular case; the calculation scheme
can be repeated for any of the bi-Hamiltonian pairs in our classification.

Now, let us consider the metric gij1 in Theorem 3 and change the variables
according with the map u 7→ v, v 7→ u; we obtain

gij1 =

(
u β
β α

u

)
α 6= β2, f i =

(
0
1

)
(18)

and the Christoffel symbols of g1 are:

Γ12
1 = Γ22

2 = Γ11
2 = Γ21

1 = 0

Γ21
2 = −Γ12

2 = Γ11
1 =

1

2
;

Γ22
1 = − α

2u2
;

The operator B is:

B =

(
u β
β α

u

)
∂x +

(
1
2

0
0 − α

2u2

)
ux +

(
0 −1

2
1
2

0

)
vx + ε

(
0 0
0 ∂−1x

)
Let us apply B to the Casimir −2v of A:

B

(
0
−2

)
= 0 +

(
0
α
u2

)
ux +

(
1
0

)
vx − ε

(
0

2x

)

Now, the constant astigmatism equation

utt +

(
1

u

)
xx

+ 2 = 0 (19)

can be written in the following form:{
ut = vx

vt = −
(
1
u

)
x
− 2x

12



and the associated Hamiltonian operator of Dubrovin-Novikov type is B
where α = 1 and β = 0. By substituting we obtain the following Christoffel
symbols:

Γ21
2 = −Γ12

2 = Γ11
1 =

1

2

Γ22
1 = − α

2u2
= − 1

2u2

Therefore, we have{
ut = vx

vx = −
(
− α
u2

)
ux − εx = −

(
1
u

)
x
− εx

In particular, we obtained the equation (19) as the second flow of the hier-
archy generated by the bi-Hamiltonian structure defined by A and B. The
Hamiltonian operator B has the expression

B =

(
u 0
0 1

u

)
∂x +

(
1
2

0
0 − 1

2u2

)
ux +

(
0 −1

2
1
2

0

)
vx +

(
0 0
0 ∂−1x

)
(20)

and, according with the computations in Section 4 and the change of variables
at the beginning of this Section, we obtain the following recursion operator:

R =

(
u∂x + 1

2
ux −1

2
vx

+1
2
vx

1
u
∂x − ux

2u2
+ ∂−1x

)
·
(

0 1
1 0

)
∂−1x =

=

(
−1

2
vx u∂x + 1

2
ux

1
u
∂x − ux

2u2
+ ∂−1x +1

2
vx

)
∂−1x .

The reader can also refer to [14]. Note that after a simple change of
coordinates the operator B in (20) is exactly the operator (7) in [14].

6 An example in three components: WDVV

equation

The equations of associativity, or Witten–Dijkgraaf–Verlinde–Verlinde equa-
tions [1] contain commuting hydrodynamic type systems

aitk = ηim
(

∂2F

∂am∂ak

)
x

.
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Indeed, the compatibility conditions (ai
tk

)tn = (aitn)tk lead directly to the
WDVV system

∂3F

∂ai∂ak∂ap
ηpq

∂3F

∂aq∂an∂aj
=

∂3F

∂ai∂an∂ap
ηpq

∂3F

∂aq∂ak∂aj
.

The concept of Frobenius manifold [2] is based on the existence of a second lo-
cal Hamiltonian structure for these commuting hydrodynamic type systems.
In the three-component case, if ηij = δi,4−i, then

F =
1

2
u2w +

1

2
uv2 + f(v, w),

where the function f(v, w) solves a single third order nonlinear differential
equation

fwww = f 2
vvw − fvwwfvvv.

A simple nontrival solution found by B.A. Dubrovin leads to the ansatz

f = − 1

16
v4γ(w),

which implies the remarkable Chazy equation

γ′′′ = 6γγ′′ − 9γ′
2

.

In the semi-simple case, the velocity matrices ηpq ∂3F
∂aq∂ak∂aj

are non-de-
generate. So, a generic solution γ(w) of the Chazy equation determines
three distinct characteristic roots of the above velocity matrix. Precisely,
according to the construction by B.A. Dubrovin, we have a pair of commuting
hydrodynamic type systems

ut =

(
−1

4
v3γ′(w)

)
x

, vt =

(
u− 3

4
v2γ(w)

)
x

, wt = vx,

uy =

(
− 1

16
v4γ′′(w)

)
x

, vy =

(
−1

4
v3γ′(w)

)
x

, wy = ux.

The corresponding velocity matrices

ηpq
∂3F

∂aq∂ak∂a2
and ηpq

∂3F

∂aq∂ak∂a3
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are non degenerate, with the exception of the particular case γ(w) = −2/w.
In the latter case, the hydrodynamic type systems reduce to the form

ut =

(
−1

2

v3

w2

)
x

, vt =

(
u+

3

2

v2

w

)
x

, wt = vx, (21)

uy =

(
1

4

v4

w3

)
x

, vy =

(
−1

2

v3

w2

)
x

, wy = ux. (22)

Their velocity matrices have a single common characteristic root only; such
degenerate cases are very interesting. For instance, hydrodynamic type sys-
tems with a unique characteristic root were recently investigated [7, 13, 15].
Let us consider the ffirst of the above three-component hydrodynamic type
system (21):

ut = − 3v2

2w2
vx +

v3

w3
wx,

vt = ux +
3v

w
vx −

3v2

2w2
wx,

wt = vx.

This system is a first example in the theory of bi-Hamiltonian hydrody-
namic type systems where the first Hamiltonian structure has a non degen-
erate metric tensor, while the second Hamiltonian structure has a degenerate
metric tensor. This system possesses an “isometry” extension, i.e.

ut = − 3v2

2w2
vx +

v3

w3
wx − x,

vt = ux +
3v

w
vx −

3v2

2w2
wx,

wt = vx.

(23)

Eliminating u and introducing the potential function z such that w = zx
and v = zt, we obtain a single, new third order integrable equation:

zttt =

(
3z2t
2zx

)
xt

−
(
z3t
2z2x

)
xx

− 1.

The system (23) admits a bi-Hamiltonian pair of the type

A =

0 0 1
0 1 0
1 0 0

 ∂x, Bij = gij∂x + Γijk u
k
x + εf i∂−1x f j,

15



which is the n = 3 analogue of the bi-Hamiltonian pair in 2 components (11).
It can be obtained as follows. The metric of the operator B is

gij =

 v3

w2
−3v2
2w

−v + 1
−3v2
2w

2v + 1 w
−v + 1 w 0

 , (24)

and the isometry that defines the nonlocal part of B is f = ∂u. Explicitely,
the operator is:

Bij =

 v3

w2
−3v2
2w

−v + 1
−3v2
2w

2v + 1 w
−v + 1 w 0

 ∂x +

 0 1 0
−1 0 0
0 0 0

ux+

+

 3v2

2w2 0 0
−3v

w
1 0

−1 0 0

 vx +

− v3

w3 0 0
3v2

2w2 0 0
0 1 0

wx +

∂−1x 0 0
0 0 0
0 0 0


The operators A and B are compatible, hence it is possible to write B in

Liouville form:

Bij =
(
rij + rji

)
∂x +

∂rij

∂uk
ukx + f i∂−1x f j

where

rij =

 v3

2w2 u 1

−3v2

2w
− u 1

2
(2v + 1) 0

−v w 0


Moreover, it is possible to write Bij as follows:

Bij =

(
ηis
∂Hj

∂us
+ ηjs

∂H i

∂us

)
∂x + ηis

∂2Hj

∂us∂uk
ukx + f i∂−1x f j

where

H1(u, v, w) = −uv − v3

2w
,

H2(u, v, w) = uw +
v2

2
+
v

2
,

H3(u, v, w) = w.
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This comes from the fact that the local part B0 of B is the Lie derivative of
A with respect to a vector field, see [9] for details.

One can see, that the second metric tensor (24) can be presented in the
following form

gij = ηij + g̃ij, (25)

where the metric g̃ij is degenerate. Thus, we come to the observation that
our bi-Hamiltonian system has a compatible pair of Hamiltonian structures,
where one of them contains a degenerate metric. This is the first example of
this kind in the theory of bi-Hamiltonian systems.

Theorem 6. The non-homogeneous hydrodynamic type system associated
with the bi-Hamiltonian pair A, B can be obtained by appling the operator B
to the Casimir u of the operator A. In particular:uv

w


t

= Aij
δF

δui
= Bij δL

δui

where L =
∫
udx and F =

∫ (
uv +

v3

2w
− x2

2
w

)
dx.

7 Conclusion

In this paper we considered the new problem of the classification of compat-
ible pairs of Hamiltonian operators Aij = ηij∂x and Bij = g̃ij∂x + Γ̃ijk u

k
x +

εf i∂−1x f j.
If the parameter ε is zero, then we get back to the classical problem of

the description of compatible Hamiltonian operators Aij0 = ηij∂x and Bij
0 =

g̃ij∂x+Γ̃ijk u
k
x, which was deeply investigated in plenty of papers for past almost

forty years (beginning from the seminal article, written by B.A. Dubrovin
and S.P. Novikov in 1983, see [3]). We already know a lot of interesting
examples of such bi-Hamiltonian pairs. However, the complete description is
determined by some integrable systems, which were derived and considered,
for instance, in [2], [6], [11]. Even in the 2-component case, such a system
is a hydrodynamic type system in 4 dependent variables and 2 independent
variables, and a general solution is not known.

In comparison with the above situation, the search of compatible pairs
of Hamiltonian operators Aij = ηij∂x and Bij = g̃ij∂x + Γ̃ijk u

k
x + εf i∂−1x f j

17



when ε 6= 0 is a less complicated task. We have been able to completely solve
this problem in the two component case, and to give a meaningful example in
three components (see Section 6). We are going to continue this investigation
in forthcoming publications.

Here we would just like to mention some nontrivial byproducts of our
classification. If ε = 0, we obtain new examples of compatible Hamiltonian
operators Aij0 = ηij∂x and Bij

0 = g̃ij∂x + Γ̃ijk u
k
x. This means that in the

general case a compatible pair of local Hamiltonian operators of the type
of A0 and B0 cannot be extended to the case ε 6= 0. So, our approach
allows to construct new distinguished bi-Hamiltonian structures Aij0 = ηij∂x
and Bij

0 = g̃ij∂x + Γ̃ijk u
k
x. Moreover, usually, compatible pairs of these bi-

Hamiltonian structures were investigated just if the second metric g̃ij is non
degenerate. However, in our paper we found a list of new examples where
such a metric is degenerate, see, for instance, (25).
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