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Abstract

This study is focused on the development of a finite difference model to
simulate Lamb wave propagation through Single Lap Joints (SLJs). The
main advantage of this model is the mathematical ability to easily reproduce
the presence of a damage (debonding) as a discontinuity in velocity values.
This makes our model suitable for continuous and embedded Structural
Health Monitoring (SHM) of a complex structure. Numerical simulations
and experimental campaigns are presented in order to validate the proposed
model.
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1. Introduction

Adhesive joints are used in aerospace, automotive and marine industries
for their good mechanical properties and light weight. For several structural
applications, they represent the only feasible method of joining components
with advantages in terms of cost, optimal stress distribution and ease of
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manufacturing. Bonded joints distribute forces over a large area avoiding
stress peaks that could arise by using fasteners like bolts, rivets or screws.

Despite these positive aspects, bonded joints are subject to fatigue degra-
dation of the adhesive layer, disbonds and voids due to non-accurate man-
ufacturing processes that reduce the load carrying capability, leading to
failure as studied in [11].

For the above reasons, the development of SHM systems is necessary in
order to ensure reliability and safety of adhesively bonded joints in complex
structures. SHM also contributes to a better knowledge of the mechanical
properties of the structures [31]. Over the past decades, several studies have
been carried out on investigating the dynamic response of the adhesive joints
and the development of efficient Non-Destructive Techniques (NDT) in or-
der to detect, evaluate and localise defects or damages eventually present
in bonded areas.

Conventional NDT are of limited use because they require to put out
of service the structure for a non-negligible time period in order to execute
post-damage inspections. In addition to the Visual Testing (VT), which is
by far the most common non-destructive examination, Ultrasonic A- and
C-scan, X-ray and thermography can be employed to inspect structural
components. In ultrasonic scanning, a transducer generates pulses of shear
or compression waves at frequency of 1 to 20 MHz that, during the propaga-
tion through the adhesion zone, is modified by the path taken and a part of
energy is reflected by discontinuities. A- and C-scan consist in the evalua-
tion of the magnitude of the reflected echoes thus obtaining a map of defects
by scanning the surface of a structure. In [27] a non-destructive testing of
the lower and upper wing skins was performed by use of an A- and C-scan
transducer obtaining information regarding the condition of composites and
the integrity of the composite-to-titanium bonded joint. A large defect was
found in a lower wing skin outlining the boundary and the location of defect
through the thickness.

X-ray techniques, in contrast to ultrasound and thermography, can pro-
vide a 3D image of a damage. In [21] a methodology to evaluate the through-
thickness distribution of damage in a [(0o/90o)2]S Carbon Fibre Reinforced
Plastic (CFRP) panels subjected to low velocity impact is developed: de-
laminations were mapped by a 3D ply-by-ply damage visualisation.

An Infrared (IR) NDT of interlaminar disbonds on fibre metal lami-
nate hybrid composites was proposed in [26]: a point-wise laser heat source
(Flying Laser Spot Thermography) was moved along a raster scanning tra-
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jectory over the structure surface; an IR camera was employed to acquire
the temperature field induced by the moving heat source; disbonds and de-
fects were then detected by analysing the perturbations of the temperature
distribution.

Yashiro et al. in [36] evaluated fatigue-induced disbond in CFRP double-
lap joints using embedded Fibre Bragg Grating (FBG) sensors. The study
is based on a change in the spectrum shapes of FBG sensors embedded
near the bond-line. These sensors experienced a step-like strain distribu-
tion due to the intact load-carrying section and the disbonded stress-free
section. The disbond area was determined from the evaluation of the re-
flection spectrum of FBG sensors embedded in different lines of a joint.

In [24] adhesively bonded CFRP samples were investigated by using
ElectroMechanical Impedance (EMI) technique. This is based on direct
and converse effects of piezoelectric sensor (PZT) attached on the inspected
structure. The electrical response picked up on the sensor is related to
mechanical characteristics of the structure and then to the modification of
adhesive bonds. Various techniques are based on nonlinear acoustics meth-
ods: the Contact Acoustic Nonlinearity (CAN) ([34], [6]), vibro-acoustics
wave modulation, nonlinear elastic wave spectroscopy and the Local Defect
Resonance (LDR) ([33], [8]). LDR is based on the local rigidity decrease of
a certain mass associated with the defect area which causes the arising of a
specific frequency related to the characteristic of the defect. In [8] the use
of nonlinear waves for detection of disbonds in adhesive joints was investi-
gated. Subharmonics, nonlinear intermodulation of the driving frequency
and defect resonance frequencies were correlated to the interaction between
the used elastic waves and disbonded regions.

One of the most promising techniques that enables inspections at long
distances is based on the application of Ultrasonic Guided Waves (UGWs)
[9, 19] such as acousto-ultrasonic induced Lamb waves. This technique
consists in exciting Lamb waves by a piezoelectric transducer attached to the
structure’s surface which can be detected by a network of multiple sensors.
The presence of defects or damages in the investigated domain alters the
signal propagation, resulting in a received signal which is different from the
one that was initially generated.

Non-linear ultrasonic waves are used also in [30] for assessment of debond-
ing in SLJ: the presence of microbubbles in the bond due to the manufactur-
ing process was investigated by interpretating the experimental behaviours
and tomographic tests. In [32] the phase and the amplitude of the structural
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SLJ response excited by an harmonic excitation was evaluated in order to
characterise defects and damages within the adhesive region according to
the dynamic response. In [25] an experimental investigation of the use of
Lamb waves for the monitoring of stiffened metallic structures was carried
out: the size and shape of defect was evaluated and visualised by a win-
dowed root-mean-squared technique for quantifying of reflected, attenuated
and transmitted energy. A baseline-free technique is proposed in [28] which
is based on the detection of modes generated by disbonds. It was demon-
strated that the disbond caused reflection, refraction and mode conversion
of the incident S0 wave. Several sensors distributed parallel to the edge of
bonded area allow the identification of disbonds by the appearance of wave
modes.

Jankauskas and Mazeika in [13] carried out a numerical and experimental
study of zero-mode Lamb waves propagation through a lap joint welded
plates used in storage tank floors. It was demonstrated that the transmission
losses of the S0 mode vary depending on the ratio between lap joint width
and wavelength providing information for the defect or damage geometry
definition. A mode similar to S0 Lamb wave propagation was used in [7]
that can be used for inspection of large welded plate so to detect defects such
as cracking or corrosion along the length of weld. Huthwaite in [12] used
guided wave tomography to produce thickness maps of corrosion damage
and defects by sending guided waves through the studied region.

In [3] fundamental Lamb wave modes was characterised in terms of prop-
agation parameters through Finite Element Method (FEM) in commercial
software in order to study the wave behaviour on a plate between two solid
bodies with imperfect contact conditions. Ren and Lissenden in [29] carried
out a fully coupled multi-physics finite element analysis, which includes the
driving circuit and the piezoelectric elements, in order to study the excita-
tion of circular crested waves due to PZT discs for different sensor geome-
try and adhesive thickness. In [15] a semi-analytical finite element (SAFE)
method wad used to model the distributed electrical excitation and scat-
tering of the waves at discontinuities by using piezoelectric elements. The
Lamb waves were modelled by Spectral Element Method (SEM) as in [23]
and [20]. Liu et al. in [22] presented a two-layer spectral finite element
model to simulate PZT-induced Lamb wave propagation in beam-like and
plate-like structures where the dynamic equation was derived from Hamil-
ton’s principle.

A Finite Difference Method (FDM) was used in ([35], [2], [14]) to simu-
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late multiple modes of Lamb waves in aluminium SLJ generated by using an
excitation toneburst representing the PZTs action. In [35] an explicit Finite
Difference (FD) scheme was applied to solve propagating Lamb waves. Bal-
asubramanyam in [2] describes a FDM to simulate S0 and A0 in plane metal
sheets obtaining the time-domain histories of displacement field. In [14] the
excitation and propagation of Lamb waves by inter-digital transducer was
modelled analytically and then compared to experimental measure obtained
by exciting Lamb waves in an aluminium plate.

For the sake of completeness, the papers [5, 16, 17, 18] shall be men-
tioned. Here, nonlinear wave equations of KdV, Boussinesq or other types
were considered as mathematical models. It was proved, both mathemati-
cally and experimentally, that solitons traveling in a delaminated material
are subject to fission, hencey they are suitable to detecting defects. This
technique, however, has a higher level of experimental complexity involving
the use of laser and optical equipment, also if it might be more suitable than
the technique presented in this paper in the case of long elastic waveguides.

Although the techniques mentioned are suitable to assess the health of
bonded areas, only UGWs allow the continuous and embedded time moni-
toring of the structures.

In this work a numerical and experimental investigation of Single Lap
Joints (SLJs) structural health by using Lamb waves propagation is pre-
sented. The aim was to monitor the state of adhesive region and estimate
the size of possible disbonds.

The paper is divided in two part: the mathematical model and its nu-
merical implementation, and the experimental part.

The mathematical model stems from the Cauchy–Navier equation for
elastodynamics [10]. The key feature lies in the fact that the space-dependent
Lamé coefficients have discontinuity on the boundary with the debonded re-
gion. The discretisation of this equation has to be performed by keeping
into account that the derivatives of the Lamé coefficients will contribute to
the FDM.

Experiments on the propagation of S0 through the adhesive zone were
performed by using two PZT sensors attached on the upper and lower plate
in pitch&catch configuration. The S0 mode was used to investigate the in-
tegrity of adhesive in bonded zone. Frequencies below the cut-off value were
used in order to avoid the presence of higher symmetric and antisymmetric
modes. The received signals were transformed by Fast Fourier Transform
(FFT) in order to correlate frequency spectra to the structural health of
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adhesive. Several wave packets with different driving frequencies were used
to investigate the bonded area. Experiments revealed, in agreement with
numerical simulations, that for each disbond length there is a given driving
frequency at which the wave packet is attenuated and presents a deformed
shape of frequency spectrum.

In this way, for SLJ structure, a novel reduced-order FD model is ob-
tained and it appears leaner, cleaner and more simplified than FE model.
The fact that numerical simulations were carried out by a relatively simple
Matlab code with a short execution time represents one point of strength
of the proposed approach, also in view of industrial applications.

2. The model

We make use of Cauchy–Navier’s equation for elastodynamics [10]:

ρutt = µ∆u + (λ+ µ)∇(div u) + 2∇̂u∇µ+ (div u)∇λ+ ρf (1)

where u is the displacement vector field, λ and µ are the Lamé coefficients
(that in our case depend on the spatial point), ρ is the (space-dependent)
density and f is the force per unit mass. We also recall that

∇̂u =
1

2
(∇u +∇uT ) (2)

We use the above equations as a model for a horizontal plate where elas-
tic waves propagate in the x and z direction. The displacement of particles
occur both in the direction of propagation and along the thickness of the
plate (y-direction). If the domain of equation (1) is a plane perpendicular to
the z axis, passing through the application point of f , there is no displace-
ment in the third direction z, hence our problem becomes 2-dimensional.

Let us introduce the notation u = (u(x, y), v(x, y)) for the displacements
in the x, y directions, respectively, and the notation f = (fx(x, y), fy(x, y))
for the force per unit mass. Then the system (1) becomes

ρutt =µ(uxx + uyy) + (λ+ µ)(uxx + vxy)+ (3a)

(2uxµx + (uy + vx)µy) + (ux + vy)λx + ρfx (3b)

ρvtt =µ(vxx + vyy) + (λ+ µ)(uxy + vyy)+ (3c)

((uy + vx)µx + 2vyµy) + (ux + vy)λy + ρfy (3d)
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Provided we neglect terms multiplied by ρx or ρy (they give a small contri-
bution in our physical situation), we can recast the above equations in the
following form:(

λ+ 2µ

ρ
ux +

λ

ρ
vy

)
x

+

(
µ

ρ
(uy + vx)

)
y

+ fx = utt (4a)(
µ

ρ
(uy + vx)

)
x

+

(
λ

ρ
ux +

λ+ 2µ

ρ
vy

)
y

+ fy = vtt (4b)

We add to the above model stress-free boundary conditions on the upper
and the lower surfaces of the plate:

λ

ρ
ux +

λ+ 2µ

ρ
vy = 0 (5a)

µ

ρ
(uy + vx) = 0 (5b)

Usually, the above equations are expressed through the longitudinal wave
speed cL and the shear wave speed cT :

c2L =
λ+ 2µ

ρ
, c2T =

µ

ρ
, (6)

and we have(
c2Lux + (c2L − 2c2T )vy

)
x

+
(
c2T (uy + vx)

)
y

+ fx = utt (7a)(
c2T (uy + vx)

)
x

+
(
(c2L − 2c2T )ux + c2Lvy

)
y

+ fy = vtt (7b)

with boundary conditions

(c2L − 2c2T )ux + c2Lvy = 0 (8a)

c2T (uy + vx) = 0 (8b)

3. Finite difference method

We model the domain of the unknown functions u, v as Ix × Iy × It,
where

Ix = [0, lx], Iy = [0, ly], It = [0, lt], (9)
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with lx, ly and lt positive constants. The space and time grid of the problem
is constructed by an equal increment ∆x = ∆y in the x and y directions,
and a time interval ∆t. Following [1], we require that

∆t ≤ ∆x√
c2L + c2T

(10)

for stability. This amounts at requiring that the signals will not propagate
across one grid rectangle in a time that is shorter than one time interval.
We assume that the numbers Nx = lx/∆x and Ny = ly/∆y are integer,
possibly by redefining the intervals to the nearest values lx or ly. We will
index points (xi, yj) with 1 ≤ i ≤ Nx + 2, 1 ≤ j ≤ Ny + 2, where

x1 = −∆x xNx+2 = lx + ∆x (11)

y1 = −∆y yNy+2 = ly + ∆y (12)

so that the nodes x1, y1, xNx+2, yNy+2 are indeed pseudo-nodes (they lie
outside the domain, see Figure 1). Finally, we suppose that Nt = lt/∆t is
an integer.

The functions cL, cT and ρ are functions of (x, y), and they are non-
constant as their values change in the spatial points where the bonding is
no longer homogeneous. In this work, we suppose that the non-homogeneity
of the bonding holds along the x direction only. In particular, we assume
that there is an interval [xI , xF ] ⊂ Ix where the bonding is loose. We define
the function cL on the grid according with the above model as follows:

cL(i, j) =

{
c1L if xi 6∈ [xI , xF ],

c2L if xi ∈ [xI , xF ],
(13)

where c1L and c2L are two constants. We make a similar definition for cT
and ρ. In the Figure 1 the top picture represents a geometric section of the
SLJ sample used for the experiments: it is possible to identify the position
of the two sensors, PZT–1 exciting the structure and PZT–2 receiving the
signal. In addition, it is possible to identify the two zones of the upper plate
forming the joint, 1 and 2, in which the wave travels at different speeds, c1L
and c2L. The zone 1 is affected only by the aluminum properties and the
Lamb waves propagate like in a 1.2 mm thick aluminum panel. The zone 2
is characterised by the influence of the aluminum–adhesive–aluminum layer
and c2L depends on the global joint thickness and on the mechanical prop-
erties of aluminum and adhesive. Having this in mind, the zone 2 has the
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Figure 1: SLJ finite difference model

thickness of the upper plate but mechanical properties averaged over the
thickness. The bottom picture represents the grid defined for solving the
wave propagation equation and this grid represents geometrically just the
volume of the upper plate with properties following what before discussed.
The point A represents the excitation point where the F force (due to the
PZT–1 action) operates. The point B represents the point where the prop-
agating wave is observed (output signal). The difference between the signal
in B and the signal in PZT–2 position is just due to the signal attenuation
through the material that is very small: the signal shape remains essentially
unaltered.

Then, we define the source of the mechanical impulse by the following
function:

F : It → R, t 7→{
A
(

(1− cos
(

2πν
Ni

(t− 2∆t)
))

sin(2πν(t− 2∆t)) if t ∈ [tI , tF ],

0 otherwise,
(14)

where A is a given amplitude, tI = 2∆t, Ni is the number of impulses of the
probe signal, ν is the frequency of the probe signal and tF = Ni/ν + 2∆t.
This is a smoothed tone burst obtained from a pure tone filtered through
an Hanning window. The tone burst excitation was chosen in order to use
coherent single-frequency wave minimising the dispersive behaviour. The
windowing function reduces the excitation of side frequencies associated
with the sharp transition at the start and the end of a conventional burst.
The choice of Ni and frequency determines the length of the wave packet
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that has to be not too long in order to avoid the interference with the
reflection due to the boundaries. Thus, bursts with less peaks are chosen
for the lower values of frequency used.

We should define the equations for the discrete unknowns u(i, j, k) and
v(i, j, k), where i denotes the point xi, j stands for yj and k stands for tk.
We proceed as follows: compute x and y derivatives in the equations (7),
then replace the derivatives of the given and unknown functions with the
following discrete quantities:

ux(i, j, k) =
1

2∆x
(u(i+ 1, j, k)− u(i− 1, j, k)), (15a)

uy(i, j, k) =
1

2∆y
(u(i, j + 1, k)− u(i, j − 1, k)), (15b)

and analogously for v, and

(cL)x(i, j) =
1

2∆x
(cL(i+ 1, j)− cL(i− 1, j)), (15c)

(cL)y(i, j) =
1

2∆y
(cL(i, j + 1)− cL(i, j − 1)), (15d)

and analogously for cT , ρ, and

uxx(i, j, k) =
1

∆x2
(u(i+ 1, j, k)− 2u(i, j, k) + u(i− 1, j, k)), (15e)

uyy(i, j, k) =
1

∆y2
(u(i, j + 1, k)− 2u(i, j, k) + u(i, j − 1, k)), (15f)

uxy(i, j, k) =
1

4∆x∆y
(u(i+ 1, j + 1, k)− u(i− 1, j + 1, k)

− u(i+ 1, j − 1, k) + u(i− 1, j − 1, k)), (15g)

and analogously for v.
We also need the discretisation of utt (and similarly the discretisation of

vtt):

utt(i, j, k) =
1

(∆t)2
(u(i, j, k + 1)− 2u(i, j, k) + u(i, j, k − 1)). (16)

Finally, we define

fx(i, j, k) =F (tk), for i = 2 (to bypass the pseudo-node x1), (17a)

fx(i, j, k) =0 otherwise, (17b)

fy(i, j, k) =0, (17c)
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as we would like to simulate the production of waves on one side of the
plate. As showed in the Figure 1, i = 2 corresponds to the edge of the
plate, while i = 1 and i = Nx + 2 correspond to the pseudo-nodes used to
satisfy the Lamb wave boundary conditions (stress-free surface).

The boundary conditions are implemented by the following equations at
the edges of Ix (for inner values of yj):

u(1, j, k) =C
∆x

2∆y
(v(2, j + 1, k)− v(2, j − 1, k)) + u(2, j, k), (18a)

v(1, j, k) =
∆x

2∆y
(u(2, j + 1, k)− u(2, j − 1, k)) + v(2, j, k), (18b)

where C = (cL(2, j)2 − 2cT (2, j)2)/cL(2, j)2, and

u(Nx + 2, j, k) =− C ∆x

2∆y
(v(Nx + 1, j + 1, k)− v(Nx + 1, j − 1, k))

+ u(Nx + 1, j, k); (19a)

v(Nx + 2, j, k) =− ∆x

2∆y
(u(Nx + 1, j + 1, k)− u(Nx + 1, j − 1, k))

+ v(Nx + 1, j, k); (19b)

where C = (cL(Nx+1, j)2−2cT (Nx+1, j)2)/cL(Nx+1, j)2 and the following
equations at the edges of Iy (for inner values of xi):

u(i, 1, k) =
∆y

2∆x
(v(i+ 1, 2, k)− v(i− 1, 2, k)) + u(i, 2, k), (20a)

v(i, 1, k) =C
∆y

2∆x
(u(i+ 1, 2, k)− u(i− 1, 2, k)) + v(i, 2, k), (20b)

where C = (cL(i, 2)2 − 2cT (i, 2)2)/cL(i, 2)2, and

u(i, Ny + 2, k) =− ∆y

2∆x
(v(i+ 1, Ny + 1, k)− v(i− 1, Ny + 1, k))

+ u(i, Ny + 1, k); (21a)

v(i, Ny + 2, k) =− C ∆y

2∆x
(u(i+ 1, Ny + 1, k)− u(i− 1, Ny + 1, k))

+ v(i, Ny + 1, k); (21b)

where C = (cL(i, Ny + 1)2 − 2cT (i, Ny + 1)2)/cL(i, Ny + 1)2
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In the system of equations (7) we can replace derivatives by the above
approximations, and get an evolutionary system of two algebraic equations
(plus the boundary conditions). The system will be of the form

u(i, j, k + 1) =Fu(u(∗, ∗, k), v(∗, ∗, k), u(∗, ∗, k − 1), v(∗, ∗, k − 1)), (22a)

v(i, j, k + 1) =Fv(u(∗, ∗, k), v(∗, ∗, k), u(∗, ∗, k − 1), v(∗, ∗, k − 1)), (22b)

where Fu and Fv are two linear functions of the arguments, and the ‘*’ stand
for the suitable space grid points, which allows to find the values of u and
v on the space grid points (xi, yj) at the time tk+1 given all values of u and
v on the space grid points (xi, yj) at the times tk, tk−1.

4. Experimental Set-up

The specimen adopted for the experimental campaign is a SLJ made of
two aluminium plates (630 mm × 126 mm × 1.2 mm) with an overlap of 30
mm (Figure 2). Here teflon film (length Deb) is applied in order to reduce

Signal 
Generator Amplifier 

P1 P2 

Oscilloscope 

PC 

deb 

b 
th 

Figure 2: Experimental set-up

the adhesive zone (length l) to simulate a disbond damage: six identical
samples are manufactured, using increasing values of debonding (3 – 5 –
7.5 – 10 – 12.5 – 15 mm). The proposed method works only for complete
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debonding along the side b, with deb not varying along the b dimension. In
other terms, the approach is bidimensional. This limitation, indeed, does
not affect the relevance of the approach: this 2D model, on one hand, is
of practical interest for all the structural applications involving beamlike
structures (for which most of the debondings are expected to be of the kind
herein treated); on the other hand, it represents the benchmark for a more
complex extension to 3D models, where the geometries and the equations
are much more complicated than the ones reported in this paper.

During the experimental tests, stress-free conditions are achieved us-
ing vibration-absorbing sponge under the free short edge and overlapped
zone of the SLJ. In Figure 3 the overall experimental process is illustrated

Signal  
generation 
with νex   

Signal  
amplification  

P1 
on sample 

P2 
on sample 

Damage 
Deb Oscilloscope PC 

Signal 
attenuation? 

Y 

N New νex  

Figure 3: Schematic of the experimental set–up

while in Figure 2 the experimental set–up is presented (see also [4], where
other methods different from those presented in this work were discussed).
The exciting input to the sample (tone burst with Ni peaks and exciting fre-
quency νex) is provided by the signal generator TG5012A of Aim & Thurlby
Thandar Instrument and powered (multiplying by 50 the input voltage) by
Falco System WMA – 300, feeding the exciting piezo-sensor P1 with low
harmonic distortion – low phase noise – high frequency resolution; the signal
excites the overlap zone and comes into the receiver sensor P2, that is con-
nected to the oscilloscope Serie 3000 PicoScope. With Single Trigger mode
control, the scope monitors the incoming signal and waits for the voltage
to rise above a given threshold (variable for each disbond length); then,
it causes the scope to capture and display just the first received waveform
on P2. All signals are low-pass filtered and processed using software Pico-
Scope 6 and MATLAB codes on PC in order to detect the differences for
the various investigated disbond lengths. This real-time acquisition of the
propagating waveforms allows to monitor the output signal: νex must be
changed as long as the P2 signal does not contain changes, suggesting the
presence of damage in the overlap zone, in terms of waveform (Figure 4–left
graphs) and frequency spectrum (Figure 4–right graphs, obtained by FFT
of the transient acquired packets).

13



Am
pl
itu
de

Time

Am
pl
itu
de

Frequency

Figure 4: Output signal post-processing (top: signal without amplitude attenuation;
bottom: signal with amplitude attenuation)

5. Results

In the Table 1 for each disbond Deb the value of Ni that is required in
order to have destructive interference with exciting frequency ν∗ex = νatt is
reported. λatt is the signal wave length computed using the longitudinal

Table 1: Numerical and experimental results

Deb
Ni

Num. Results Exp. Results Debev Error
[mm] νatt [kHz] λatt [mm] νatt [kHz] λatt [mm] [mm] [%]

3 8 357 14.1 344 14.6 3.4 13.1
5

5

225 22.4 230 21.9 5.1 1.5
7.5 154 32.7 155 32.5 7.6 0.4
10 118 42.6 116 43.4 10.1 0.6

12.5 92 54.7 95 52.9 12.4 -1.7
15 3 79 63.7 87 57.8 13.5 -10.6

wave velocity in aluminum sample (5030 m/s in Figure 5 and 6). This value
was obtained by resolving the Rayleigh-Lamb equation in MATLAB. A very
slightly dispersive behaviour can be observed between the used frequency
(νth = 0.0948 MHzmm for νatt equal to 79 kHz and νth = 0.4284 MHzmm
for νatt equal to 357 kHz) in curves of Figure 5 (wave velocity dispersion
curves) and Figure 6 (group velocity dispersion curves).

From Table 1 the following conclusions can be formulated: (i) disbond
length smaller than 3 mm and bigger than 15 mm were not taken into
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Figure 6: Wave speed group dispersion for
aluminum plate (S0 in black and A0 in grey)

account since they look far from practical interest; (ii) for a proper combi-
nation of number of peaks and debonding length, there is a specific exciting
frequency νatt characterised by attenuated amplitude signal; (iii) increas-
ing the disbond length results in a linear increase of λatt (see Figure 14);
(iv) there is a strong correlation between numerical and experimental re-
sults, in terms of Debev (see 10% error bar in Figure 14). In Figure 7a)
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Figure 7: Experimental a) and numerical b) signals obtained by using a 5-peaks toneburst
at 155 kHz for a disbond length of 7.5 mm

a typical experimental signal acquired in PZT–2 is reported: the dotted
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circle includes the part of the signal showing the attenuation due to the de-
structive interference. All the remaining part is the result of the reflection
on the sample boundaries. The numerical simulations, being the result of
a two-dimensional model, provide a signal without reflections like the one
presented in Figure 7b).

In the Figures from 8 to 13, FFT of the transient acquired signals (grey
scale) and the numerical simulations (black scale), windowed at the packet
arrival time, are reported for the different conditions of destructive inter-
ference related to the different values of disbond. Whilst the output of
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Figure 8: Deb = 3 mm: experiment vs nu-
merical model
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Figure 9: Deb = 5 mm: experiment vs nu-
merical model
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Figure 10: Deb = 7.5 mm: experiment vs
numerical model
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Figure 11: Deb=10 mm: experiment vs nu-
merical model

the numerical model is a displacement vector field ([m]), the experimental
post-processing works with P2 signal ([mV]). The destructive interference,
clearly represented in the numerical and experimental plots, is characterised
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by a strong amplitude attenuation at the exciting frequency νatt (vertical
dotted line in Figures) related to the specific value of disbond. The shape of
the attenuated signals deviate from the bell-shape (Figure 4) of the original
excitation.
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Figure 12: Deb=12.5 mm: experiment vs
numerical model
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Figure 13: Deb=15 mm: experiment vs nu-
merical model

These plots are characterised by cusps that mean frequency values with
very low amplitude and assume a two bell-shape frequency spectrum. From
these Figures it is possible to highlight a high correlation between numerical
and experimental results confirming what provided by Table 1. The error
is below 10% except for the case with 15 mm (which represents the 50% of
the total bond length) and 3 mm of debonding.

In Figure 14 the numerical wave lengths, in circle markers, are reported
with a linear interpolation formula (intercept equal to zero and dotted line
in Figure); experimental results are reported in diamond markers. The slope
value, SLJ specific feature, is used to evaluate the debonding length Debev
(coming from experimental wave lengths λatt).

Experiments and numerical simulations were performed using toneburst
with central frequency other than νatt. For these situations the wave packet
preserved the original profile (and thus the frequency spectrum). These
results were not reported in the paper for the sake of conciseness.

6. Conclusions

This article presents a novel numerical model for wave motion in media
with space dependent properties. Cauchy–Navier’s equations for elastody-
namics were solved, in terms of finite differences, for a thin plate (SLJ)
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excited by Lamb waves. The presence of an overlap zone with damage
(debonding) was simulated with a piecewise-constant function describing
the wave propagation velocity (dependent on the density). Modulated tone
bursts were used to excite the joint and this excitation was modelled by a
source point in the finite differences model. The joint spectral response was
carefully investigated to relate the damage, artificially realised, with the
signal content. Numerical simulations and experimental campaigns were
conducted to validate the developed model and signal attenuation at spe-
cific frequencies for each value of disbond was found representative of the
damage. Every frequency νatt was associated with a wave length in the
attenuated signal: a linear relationship between λatt and Deb was found.

It is worth to remark that the observed coincidence of numerical simula-
tions and experimental results occurs in spite of the more simple geometry
of the numerical model. This is probably due to the presence of a discrete
symmetry property of the solution across the bonded region. However, at
the moment this statement shall be regarded as a conjecture as a mathe-
matical proof o it is yet to be found.

There are several reasons that make the method interesting. First of
all, the method based on a Finite Difference modelling is relatively simple.
Numerical simulations like the ones presented in this manuscript can be
implemented in any programming language (Matlab was used, but Octave
would do the same job and is free) and run on any computer, as they are
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not resource-consuming. Then, the proposed approach reveals the damage
length by using particular exciting frequencies. In the authors’ opinion,
the elegance, simplicity and low cost of the method make it particularly
interesting for industrial applications.
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