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Editorial

This volume contains the proceedings of the international conference “Ad-
vances in Group Theory and Applications 2011”, held in Porto Cesareo in
June 2011. This was the third in a series of such conferences. The detailed
course notes and individual research papers, which the authors have so gener-
ously and carefully edited, provide a background and stimulus that will promote
further efforts to resolve the many challenging questions raised.

In this regard, prompted by the success of the earlier volumes, the Scientific
Committee decided to continue the conference format – “Lecture courses” com-
plemented by individual “Research presentations”. We express our sincerest
thanks to all who attended the conference and trust that these proceedings will
serve also as a special memento of an enjoyable meeting.

Without special financial support it would not be possible to undertake
the many organizational tasks. We gratefully acknowledge the contribution
made by “Università del Salento”, “Università di Napoli Federico II”, “Seconda
Università di Napoli”, “Università di Salerno”, “Università dell’Aquila” and
G.N.S.A.G.A. of INdAM.

We give special mention to Valerio Guido, Maria Maddalena Miccoli, Roberto
Rizzo, Alessio Russo, Salvatore Siciliano, Ernesto Spinelli, Giovanni Vincenzi.
Their expert knowledge and willing assistance ensured that any administra-
tive help sought was delivered speedily and with caring courtesy. We are most
grateful to them and also acknowledge with pleasure their valued contribution.
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Republic); H. Laue, Mathem. Seminar der Universität Kiel, Ludewig Meyn Str. 4, D-24118
KIEL 1 (Germany); G. Metafune, Dipartimento di Matematica “E. De Giorgi”, Università
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Abstract. In this expository paper we describe the unifying approach for many known
entropies in Mathematics developed in [27].

First we give the notion of semigroup entropy hS : S → R+ in the category S of normed
semigroups and contractive homomorphisms, recalling also its properties from [27]. For a spe-
cific category X and a functor F : X → S we have the entropy hF , defined by the composition
hF = hS ◦ F , which automatically satisfies the same properties proved for hS . This gen-
eral scheme permits to obtain many of the known entropies as hF , for appropriately chosen
categories X and functors F : X → S.

In the last part we recall the definition and the fundamental properties of the algebraic
entropy for group endomorphisms, noting how its deeper properties depend on the specific
setting. Finally we discuss the notion of growth for flows of groups, comparing it with the
classical notion of growth for finitely generated groups.

Keywords: entropy, normed semigroup, semigroup entropy, bridge theorem, algebraic en-
tropy, growth, Milnor Problem.

MSC 2000 classification: 16B50,20M15,20K30,20F65,22D35,

37A35,37B40,54C70,55U30

1 Introduction

This paper covers the series of three talks given by the first named author
at the conference “Advances in Group Theory and Applications 2011” held in
June, 2011 in Porto Cesareo. It is a survey about entropy in Mathematics, the
approach is the categorical one adopted in [27] (and announced in [16], see also
[13]).

We start recalling that a flow in a category X is a pair (X, φ), where X is
an object of X and φ : X → X is a morphism in X. A morphism between two
flows φ : X → X and ψ : Y → Y is a morphism α : X → Y in X such that the

http://siba-ese.unisalento.it/ c� 2013 Università del Salento
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(b) CTop of compact topological spaces and continuous maps (topological
entropy htop);

(c) Mes of probability measure spaces and measure preserving maps (measure
entropy hmes);

(d) Grp of groups and group homomorphisms and its subcategory AbGrp of
abelian groups (algebraic entropy ent, algebraic entropy halg and adjoint
algebraic entropy ent⋆);

(e) ModR of right modules over a ring R and R-module homomorphisms
(algebraic i-entropy enti).

Each of these entropies has its specific definition, usually given by limits com-
puted on some “trajectories” and by taking the supremum of these quantities
(we will see some of them explicitly). The proofs of the basic properties take
into account the particular features of the specific categories in each case too.
It appears that all these definitions and basic properties share a lot of common
features. The aim of our approach is to unify them in some way, starting from a
general notion of entropy of an appropriate category. This will be the semigroup
entropy hS defined on the category S of normed semigroups.

In Section 2 we first introduce the category S of normed semigroups and
related basic notions and examples mostly coming from [27]. Moreover, in §2.2
(which can be avoided at a first reading) we add a preorder to the semigroup and
discuss the possible behavior of a semigroup norm with respect to this preorder.
Here we include also the subcategory L of S of normed semilattices, as the
functors given in Section 3 often have as a target actually a normed semilattice.

In §2.3 we define explicitly the semigroup entropy hS : S → R+ on the cat-
egory S of normed semigroups. Moreover we list all its basic properties, clearly
inspired by those of the known entropies, such as Monotonicity for factors,
Invariance under conjugation, Invariance under inversion, Logarithmic Law,
Monotonicity for subsemigroups, Continuity for direct limits, Weak Addition
Theorem and Bernoulli normalization.

Once defined the semigroup entropy hS : S → R+, our aim is to obtain
all known entropies h : X → R+ as a composition hF := hS ◦ F of a functor
F : X → S and hS:

X

F

��

h=hF

�������������������

R+

S
hS

�������������������

This is done explicitly in Section 3, where all specific entropies listed above are
obtained in this scheme. We dedicate to each of them a subsection, each time

3

diagram

X
α ��

φ

��

Y

ψ

��
X

α �� Y.

commutes. This defines the category FlowX of flows in X.

To classify flows in X up to isomorphisms one uses invariants, and entropy
is roughly a numerical invariant associated to flows. Indeed, letting R≥0 = {r ∈
R : r ≥ 0} and R+ = R≥0 ∪ {∞}, by the term entropy we intend a function

h : FlowX → R+, (1)

obeying the invariance law h(φ) = h(ψ) whenever (X, φ) and (Y, ψ) are iso-
morphic flows. The value h(φ) is supposed to measure the degree to which X
is “scrambled” by φ, so for example an entropy should assign 0 to all identity
maps. For simplicity and with some abuse of notations, we adopt the following

Convention. If X is a category and h an entropy of X, writing h : X → R+ we
always mean h : FlowX → R+ as in (1).

The first notion of entropy in Mathematics was the measure entropy hmes

introduced by Kolmogorov [53] and Sinai [74] in 1958 in Ergodic Theory. The
topological entropy htop for continuous self-maps of compact spaces was defined
by Adler, Konheim and McAndrew [1] in 1965. Another notion of topological
entropy hB for uniformly continuous self-maps of metric spaces was given later
by Bowen [11] (it coincides with htop on compact metric spaces). Finally, entropy
was taken also in Algebraic Dynamics by Adler, Konheim and McAndrew [1] in
1965 and Weiss [85] in 1974; they defined an entropy ent for endomorphisms of
torsion abelian groups. Then Peters [64] in 1979 introduced its extension halg

to automorphisms of abelian groups; finally halg was defined in [19] and [20]
for any group endomorphism. Recently also a notion of algebraic entropy for
module endomorphisms was introduced in [70], namely the algebraic i-entropy
enti, where i is an invariant of a module category. Moreover, the adjoint alge-
braic entropy ent⋆ for group endomorphisms was investigated in [26] (and its
topological extension in [35]). Finally, one can find in [5] and [20] two “mutually
dual” notions of entropy for self-maps of sets, namely the covariant set-theoretic
entropy h and the contravariant set-theoretic entropy h∗.

The above mentioned specific entropies determined the choice of the main
cases considered in this paper. Namely, X will be one of the following categories
(other examples can be found in §§2.5 and 3.6):

(a) Set of sets and maps and its non-full subcategory Setfin of sets and finite-
to-one maps (set-theoretic entropies h and h∗ respectively);

2
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(b) CTop of compact topological spaces and continuous maps (topological
entropy htop);
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This is done explicitly in Section 3, where all specific entropies listed above are
obtained in this scheme. We dedicate to each of them a subsection, each time
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giving explicitly the functor from the considered category to the category of
normed semigroups. More details and complete proofs can be found in [27].
These functors and the entropies are summarized by the following diagram:

Mes

mes
�

�
�

�
�

���
�

�
�

�

hmes

��
��
��
��
��
��
��

���
��
��
��
��
��
��
�

AbGrp

ent
��
��
��
��
��
��
��

����
��
��
��
��
��
��

sub
�
�
�
�
�

���
�
�
�
�

CTop

cov
�

�
�

�
�

���
�

�
�

�

htop

��
��

��
��

��
��

�

���
��

��
��

��
��

��

Grp

pet
�

�
�

�
�

���
�

�
�

�

halg

��
��

��
��

��
��

�

����
��

��
��

��
��

�

Set

atr
������

��������

h
�������������

���������������

Grp

sub⋆
� � � � � �

��� � � � � �

ent⋆
��

��
��

��
��

��
��

����
��

��
��

��
��

��

Setfin

str
�������

���������

h∗
��������������

����������������

ModR

subi
� � � � � � �

��� � � � � � �

enti
���������������

�����������������
S

hS

��
R+

In this way we obtain a simultaneous and uniform definition of all entropies and
uniform proofs (as well as a better understanding) of their general properties,
namely the basic properties of the specific entropies can be derived directly from
those proved for the semigroup entropy.

The last part of Section 3 is dedicated to what we call Bridge Theorem
(a term coined by L. Salce), that is roughly speaking a connection between
entropies h1 : X1 → R+ and h2 : X2 → R+ via functors ε : X1 → X2. Here is a
formal definition of this concept:

Definition 1. Let ε : X1 → X2 be a functor and let h1 : X1 → R+ and
h2 : X2 → R+ be entropies of the categories X1 and X2, respectively (as in the
diagram below).

X1

ε

��

h1

�������������������

R+

X2
h2

�������������������

We say that the pair (h1, h2) satisfies the weak Bridge Theorem with respect to
the functor ε if there exists a positive constant Cε, such that for every endo-
morphism φ in X1

h2(ε(φ)) ≤ Cεh1(φ). (2)

If equality holds in (2) we say that (h1, h2) satisfies the Bridge Theorem with
respect to ε, and we shortly denote this by (BTε).

4

In §3.10 we discuss the Bridge Theorem passing through the category S of
normed semigroups and so using the new semigroup entropy. This approach per-
mits for example to find a new and transparent proof of Weiss Bridge Theorem
(see Theorem 6) as well as for other Bridge Theorems.

A first limit of this very general setting is the loss of some of the deeper
properties that a specific entropy may have. So in the last Section 4 for the
algebraic entropy we recall the definition and the fundamental properties, which
cannot be deduced from the general scheme.

We start Section 4 recalling the Algebraic Yuzvinski Formula (see Theorem
9) recently proved in [37], giving the values of the algebraic entropy of lin-
ear transformations of finite-dimensional rational vector spaces in terms of the
Mahler measure. In particular, this theorem provides a connection of the alge-
braic entropy with the famous Lehmer Problem. Two important applications of
the Algebraic Yuzvinski Formula are the Addition Theorem and the Uniqueness
Theorem for the algebraic entropy in the context of abelian groups.

In §4.3 we describe the connection of the algebraic entropy with the classical
topic of growth of finitely generated groups in Geometric Group Theory. Its def-
inition was given independently by Schwarzc [72] and Milnor [56], and after the
publication of [56] it was intensively investigated; several fundamental results
were obtained by Wolf [89], Milnor [57], Bass [6], Tits [76] and Adyan [2]. In
[58] Milnor proposed his famous problem (see Problem 1 below); the question
about the existence of finitely generated groups with intermediate growth was
answered positively by Grigorchuk in [42, 43, 44, 45], while the characterization
of finitely generated groups with polynomial growth was given by Gromov in
[47] (see Theorem 12).

Here we introduce the notion of finitely generated flows (G, φ) in the category
of groups and define the growth of (G, φ). When φ = idG is the identical
endomorphism, then G is a finitely generated group and we find exactly the
classical notion of growth. In particular we recall a recent significant result
from [22] extending Milnor’s dichotomy (between polynomial and exponential
growth) to finitely generated flows in the abelian case (see Theorem 13). We
leave also several open problems and questions about the growth of finitely
generated flows of groups.

The last part of the section, namely §4.4, is dedicated to the adjoint al-
gebraic entropy. As for the algebraic entropy, we recall its original definition
and its main properties, which cannot be derived from the general scheme. In
particular, the adjoint algebraic entropy can take only the values 0 and ∞ (no
finite positive value is attained) and we see that the Addition Theorem holds
only restricting to bounded abelian groups.

A natural side-effect of the wealth of nice properties of the entropy hF =

5
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We say that the pair (h1, h2) satisfies the weak Bridge Theorem with respect to
the functor ε if there exists a positive constant Cε, such that for every endo-
morphism φ in X1

h2(ε(φ)) ≤ Cεh1(φ). (2)

If equality holds in (2) we say that (h1, h2) satisfies the Bridge Theorem with
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Definition 3. A normed semigroup (S, v) is:

(i) bounded if there exists C ∈ N+ such that v(x) ≤ C for all x ∈ S;

(ii) arithmetic if for every x ∈ S there exists a constant Cx ∈ N+ such that
v(xn) ≤ Cx · log(n + 1) for every n ∈ N.

Obviously, bounded semigroups are arithmetic.

Example 1. Consider the monoid S = (N, +).

(a) Norms v on S correspond to subadditive sequences (an)n∈N in R+ (i.e.,
an+m ≤ an + am) via v �→ (v(n))n∈N. Then limn→∞

an

n = infn∈N
an

n exists
by Fekete Lemma [33].

(b) Define v : S → R+ by v(x) = log(1+x) for x ∈ S. Then v is an arithmetic
semigroup norm.

(c) Define v1 : S → R+ by v1(x) =
√

x for x ∈ S. Then v1 is a semigroup
norm, but (S, +, v1) is not arithmetic.

(d) For a ∈ N, a > 1 let va(n) =
∑

i bi, when n =
∑k

i=0 bia
i and 0 ≤ bi < a

for all i. Then va is an arithmetic norm on S making the map x �→ ax an
endomorphism in S.

2.2 Preordered semigroups and normed semilattices

A triple (S, ·,≤) is a preordered semigroup if the semigroup (S, ·) admits a
preorder ≤ such that

x ≤ y implies x · z ≤ y · z and z · x ≤ z · y for all x, y, z ∈ S.

Write x ∼ y when x ≤ y and y ≤ x hold simultaneously. Moreover, the positive
cone of S is

P+(S) = {a ∈ S : x ≤ x · a and x ≤ a · x for every x ∈ S}.

A norm v on the preordered semigroup (S, ·,≤) is monotone if x ≤ y implies
v(x) ≤ v(y) for every x, y ∈ S. Clearly, v(x) = v(y) whenever x ∼ y and the
norm v of S is monotone.

Now we propose another notion of monotonicity for a semigroup norm which
does not require the semigroup to be explicitly endowed with a preorder.

Definition 4. Let (S, v) be a normed semigroup. The norm v is s-monotone
if

max{v(x), v(y)} ≤ v(x · y) for every x, y ∈ S.

7

hS ◦ F , obtained from the semigroup entropy hS through functors F : X → S,
is the loss of some entropies that do not have all these properties. For example
Bowen’s entropy hB cannot be obtained as hF since hB(φ−1) = hB(φ) fails
even for the automorphism φ : R → R defined by φ(x) = 2x, see §3.6 for an
extended comment on this issue; there we also discuss the possibility to obtain
Bowen’s topological entropy of measure preserving topological automorphisms
of locally compact groups in the framework of our approach. For the same
reason other entropies that cannot be covered by this approach are the intrinsic
entropy for endomorphisms of abelian groups [25] and the topological entropy
for automorphisms of locally compact totally disconnected groups [17]. This
occurs also for the function φ �→ log s(φ), where s(φ) is the scale function
defined by Willis [86, 87]. The question about the relation of the scale function
to the algebraic or topological entropy was posed by T. Weigel at the conference;
these non-trivial relations are discussed for the topological entropy in [8].

2 The semigroup entropy

2.1 The category S of normed semigroups

We start this section introducing the category S of normed semigroups, and
other notions that are fundamental in this paper.

Definition 2. Let (S, ·) be a semigroup.

(i) A norm on S is a map v : S → R≥0 such that

v(x · y) ≤ v(x) + v(y) for every x, y ∈ S.

A normed semigroup is a semigroup provided with a norm.

If S is a monoid, a monoid norm on S is a semigroup norm v such that
v(1) = 0; in such a case S is called normed monoid.

(ii) A semigroup homomorphism φ : (S, v) → (S′, v′) between normed semi-
groups is contractive if

v′(φ(x)) ≤ v(x) for every x ∈ S.

Let S be the category of normed semigroups, which has as morphisms all
contractive semigroup homomorphisms. In this paper, when we say that S is
a normed semigroup and φ : S → S is an endomorphism, we will always mean
that φ is a contractive semigroup endomorphism. Moreover, let M be the non-
full subcategory of S with objects all normed monoids, where the morphisms
are all (necessarily contractive) monoid homomorphisms.

We give now some other definitions.

6



7

Definition 3. A normed semigroup (S, v) is:

(i) bounded if there exists C ∈ N+ such that v(x) ≤ C for all x ∈ S;

(ii) arithmetic if for every x ∈ S there exists a constant Cx ∈ N+ such that
v(xn) ≤ Cx · log(n + 1) for every n ∈ N.

Obviously, bounded semigroups are arithmetic.

Example 1. Consider the monoid S = (N, +).

(a) Norms v on S correspond to subadditive sequences (an)n∈N in R+ (i.e.,
an+m ≤ an + am) via v �→ (v(n))n∈N. Then limn→∞

an

n = infn∈N
an

n exists
by Fekete Lemma [33].

(b) Define v : S → R+ by v(x) = log(1+x) for x ∈ S. Then v is an arithmetic
semigroup norm.

(c) Define v1 : S → R+ by v1(x) =
√

x for x ∈ S. Then v1 is a semigroup
norm, but (S, +, v1) is not arithmetic.

(d) For a ∈ N, a > 1 let va(n) =
∑

i bi, when n =
∑k

i=0 bia
i and 0 ≤ bi < a

for all i. Then va is an arithmetic norm on S making the map x �→ ax an
endomorphism in S.

2.2 Preordered semigroups and normed semilattices

A triple (S, ·,≤) is a preordered semigroup if the semigroup (S, ·) admits a
preorder ≤ such that

x ≤ y implies x · z ≤ y · z and z · x ≤ z · y for all x, y, z ∈ S.

Write x ∼ y when x ≤ y and y ≤ x hold simultaneously. Moreover, the positive
cone of S is

P+(S) = {a ∈ S : x ≤ x · a and x ≤ a · x for every x ∈ S}.

A norm v on the preordered semigroup (S, ·,≤) is monotone if x ≤ y implies
v(x) ≤ v(y) for every x, y ∈ S. Clearly, v(x) = v(y) whenever x ∼ y and the
norm v of S is monotone.

Now we propose another notion of monotonicity for a semigroup norm which
does not require the semigroup to be explicitly endowed with a preorder.

Definition 4. Let (S, v) be a normed semigroup. The norm v is s-monotone
if

max{v(x), v(y)} ≤ v(x · y) for every x, y ∈ S.

7

hS ◦ F , obtained from the semigroup entropy hS through functors F : X → S,
is the loss of some entropies that do not have all these properties. For example
Bowen’s entropy hB cannot be obtained as hF since hB(φ−1) = hB(φ) fails
even for the automorphism φ : R → R defined by φ(x) = 2x, see §3.6 for an
extended comment on this issue; there we also discuss the possibility to obtain
Bowen’s topological entropy of measure preserving topological automorphisms
of locally compact groups in the framework of our approach. For the same
reason other entropies that cannot be covered by this approach are the intrinsic
entropy for endomorphisms of abelian groups [25] and the topological entropy
for automorphisms of locally compact totally disconnected groups [17]. This
occurs also for the function φ �→ log s(φ), where s(φ) is the scale function
defined by Willis [86, 87]. The question about the relation of the scale function
to the algebraic or topological entropy was posed by T. Weigel at the conference;
these non-trivial relations are discussed for the topological entropy in [8].

2 The semigroup entropy

2.1 The category S of normed semigroups

We start this section introducing the category S of normed semigroups, and
other notions that are fundamental in this paper.

Definition 2. Let (S, ·) be a semigroup.

(i) A norm on S is a map v : S → R≥0 such that

v(x · y) ≤ v(x) + v(y) for every x, y ∈ S.

A normed semigroup is a semigroup provided with a norm.

If S is a monoid, a monoid norm on S is a semigroup norm v such that
v(1) = 0; in such a case S is called normed monoid.

(ii) A semigroup homomorphism φ : (S, v) → (S′, v′) between normed semi-
groups is contractive if

v′(φ(x)) ≤ v(x) for every x ∈ S.

Let S be the category of normed semigroups, which has as morphisms all
contractive semigroup homomorphisms. In this paper, when we say that S is
a normed semigroup and φ : S → S is an endomorphism, we will always mean
that φ is a contractive semigroup endomorphism. Moreover, let M be the non-
full subcategory of S with objects all normed monoids, where the morphisms
are all (necessarily contractive) monoid homomorphisms.

We give now some other definitions.

6



8

This inequality may become a too stringent condition when S is close to be
a group; indeed, if S is a group, then it implies that v(S) = {v(1)}, in particular
v is constant.

If (S, +, v) is a commutative normed monoid, it admits a preorder ≤a defined
for every x, y ∈ S by x ≤a y if and only if there exists z ∈ S such that x+z = y.
Then (S, ·,≤) is a preordered semigroup and the norm v is s-monotone if and
only if v is monotone with respect to ≤a.

The following connection between monotonicity and s-monotonicity is clear.

Lemma 1. Let S be a preordered semigroup. If S = P+(S), then every
monotone norm of S is also s-monotone.

A semilattice is a commutative semigroup (S,∨) such that x ∨ x = x for
every x ∈ S.

Example 2. (a) Each lattice (L,∨,∧) gives rise to two semilattices, namely
(L,∨) and (L,∧).

(b) A filter F on a given set X is a semilattice with respect to the intersection,
with zero element the set X.

Let SL be the full subcategory of S with objects all normed semilattices.

Every normed semilattice (L,∨) is trivially arithmetic, moreover the canon-
ical partial order defined by

x ≤ y if and only if x ∨ y = y,

for every x, y ∈ L, makes L also a partially ordered semigroup.

Neither preordered semigroups nor normed semilattices are formally needed
for the definition of the semigroup entropy. Nevertheless, they provide signifi-
cant and natural examples, as well as useful tools in the proofs, to justify our
attention to this topic.

2.3 Entropy in S

For (S, v) a normed semigroup φ : S → S an endomorphism, x ∈ S and
n ∈ N+ consider the n-th φ-trajectory of x

Tn(φ, x) = x · φ(x) · . . . · φn−1(x)

and let

cn(φ, x) = v(Tn(φ, x)).

Note that cn(φ, x) ≤ n · v(x). Hence the growth of the function n �→ cn(φ, x) is
at most linear.

8

Definition 5. Let S be a normed semigroup. An endomorphism φ : S → S
is said to have logarithmic growth, if for every x ∈ S there exists Cx ∈ N+ with
cn(φ, x) ≤ Cx · log(n + 1) for all n ∈ N+.

Obviously, a normed semigroup S is arithmetic if and only if idS has loga-
rithmic growth.

The following theorem from [27] is fundamental in this context as it witnesses
the existence of the semigroup entropy; so we give its proof also here for reader’s
convenience.

Theorem 1. Let S be a normed semigroup and φ : S → S an endomor-
phism. Then for every x ∈ S the limit

hS(φ, x) := lim
n→∞

cn(φ, x)

n
(3)

exists and satisfies hS(φ, x) ≤ v(x).

Proof. The sequence (cn(φ, x))n∈N+
is subadditive. Indeed,

cn+m(φ, x) = v(x · φ(x) · . . . · φn−1(x) · φn(x) · . . . · φn+m−1(x))

= v((x · φ(x) · . . . · φn−1(x)) · φn(x · . . . · φm−1(x)))

≤ cn(φ, x) + v(φn(x · . . . · φm−1(x)))

≤ cn(φ, x) + v(x · . . . · φm−1(x)) = cn(φ, x) + cm(φ, x).

By Fekete Lemma (see Example 1 (a)), the limit limn→∞
cn(φ,x)

n exists and

coincides with infn∈N+

cn(φ,x)
n . Finally, hS(φ, x) ≤ v(x) follows from cn(φ, x) ≤

nv(x) for every n ∈ N+. QED

Remark 1. (a) The proof of the existence of the limit defining hS(φ, x)
exploits the property of the semigroup norm and also the condition on φ
to be contractive. For an extended comment on what can be done in case
the function v : S → R+ fails to have that property see §2.5.

(b) With S = (N, +), φ = idN and x = 1 in Theorem 1 we obtain exactly item
(a) of Example 1.

Definition 6. Let S be a normed semigroup and φ : S → S an endomor-
phism. The semigroup entropy of φ is

hS(φ) = sup
x∈S

hS(φ, x).

9
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Obviously h#
S and hS coincide on the identity map and on commutative

normed semigroups, but now we see that in general they do not take always the
same values. Item (a) in the following example shows that it may occur the case
that they do not coincide “locally”, while they coincide “globally”. Moreover,
modifying appropriately the norm in item (a), J. Spevák found the example in

item (b) for which h#
S and hS do not coincide even “globally”.

Example 3. Let X = {xn}n∈Z be a faithfully enumerated countable set
and let S be the free semigroup generated by X. An element w ∈ S is a word
w = xi1xi2 . . . xim with m ∈ N+ and ij ∈ Z for j = 1, 2, . . . , m. In this case m
is called the length ℓX(w) of w, and a subword of w is any w′ ∈ S of the form
w′ = xikxik+1 . . . xil with 1 ≤ k ≤ l ≤ n.

Consider the automorphism φ : S → S determined by φ(xn) = xn+1 for
every n ∈ Z.

(a) Let s(w) be the number of adjacent pairs (ik, ik+1) in w such that ik <
ik+1. The map v : S → R+ defined by v(w) = s(w) + 1 is a semigroup
norm. Then φ : (S, v) → (S, v) is an automorphism of normed semigroups.

It is straightforward to prove that, for w = xi1xi2 . . . xim ∈ S,

(i) h#
S(φ, w) = hS(φ, w) if and only if i1 > im + 1;

(ii) h#
S(φ, w) = hS(φ, w) − 1 if and only if im = i1 or im = i1 − 1.

Moreover,

(iii) h#
S(φ) = hS(φ) = ∞.

In particular, hS(φ, x0) = 1 while h#
S(φ, x0) = 0.

(b) Define a semigroup norm ν : S → R+ as follows. For w = xi1xi2 . . . xin ∈ S
consider its subword w′ = xikxik+1

. . . xil with maximal length satisfying
ij+1 = ij + 1 for every j ∈ Z with k ≤ j ≤ l − 1 and let ν(w) = ℓX(w′).
Then φ : (S, ν) → (S, ν) is an automorphism of normed semigroups.

It is possible to prove that, for w ∈ S,

(i) if ℓX(w) = 1, then ν(Tn(φ, w)) = n and ν(T#
n (φ, w)) = 1 for every

n ∈ N+;

(ii) if ℓX(w) = k with k > 1, then ν(Tn(φ, w)) < 2k and ν(T#
n (φ, w)) <

2k for every n ∈ N+.

From (i) and (ii) and from the definitions we immediately obtain that

(iii) hS(φ) = 1 �= 0 = h#
S(φ).

11

If an endomorphism φ : S → S has logarithmic growth, then hS(φ) = 0. In
particular, hS(idS) = 0 if S is arithmetic.

Recall that an endomorphism φ : S → S of a normed semigroup S is locally
quasi periodic if for every x ∈ S there exist n, k ∈ N, k > 0, such that φn(x) =
φn+k(x). If S is a monoid and φ(1) = 1, then φ is locally nilpotent if for every
x ∈ S there exists n ∈ N+ such that φn(x) = 1.

Lemma 2. Let S be a normed semigroup and φ : S → S an endomorphism.

(a) If S is arithmetic and φ is locally periodic, then hS(φ) = 0.

(b) If S is a monoid and φ(1) = 1 and φ is locally nilpotent, then hS(φ) = 0.

Proof. (a) Let x ∈ S, and let l, k ∈ N+ be such that φl(x) = φl+k(x). For every
m ∈ N+ one has

Tl+mk(φ, x) = Tl(φ, x) · Tm(idS , y) = Tl(φ, x) · ym,

where y = φl(Tk(φ, x)). Since S is arithmetic, there exists Cx ∈ N+ such that

v(Tl+mk(φ, x)) = v(Tl(φ, x) · ym) ≤
v(Tl(φ, x)) + v(ym) ≤ v(Tl(φ, x)) + Cx · log(m + 1),

so limm→∞
v(Tl+mk(φ,x))

l+mk = 0.
Therefore we have found a subsequence of (cn(φ, x))n∈N+

converging to 0, so
also hS(φ, x) = 0. Hence hS(φ) = 0.

(b) For x ∈ S, there exists n ∈ N+ such that φn(x) = 1. Therefore
Tn+k(φ, x) = Tn(φ, x) for every k ∈ N, hence hS(φ, x) = 0. QED

We discuss now a possible different notion of semigroup entropy. Let (S, v)
be a normed semigroup, φ : S → S an endomorphism, x ∈ S and n ∈ N+. One
could define also the “left” n-th φ-trajectory of x as

T#
n (φ, x) = φn−1(x) · . . . · φ(x) · x,

changing the order of the factors with respect to the above definition. With
these trajectories it is possible to define another entropy letting

h#
S(φ, x) = lim

n→∞

v(T#
n (φ, x))

n
,

and
h#

S(φ) = sup{h#
S(φ, x) : x ∈ S}.

In the same way as above, one can see that the limit defining h#
S(φ, x) exists.
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We list now the main basic properties of the semigroup entropy. For com-
plete proofs and further details see [27].

Lemma 3 (Monotonicity for factors). Let S, T be normed semigroups and
φ : S → S, ψ : T → T endomorphisms. If α : T → S is a surjective homomor-
phism such that α ◦ ψ = φ ◦ α, then hS(φ) ≤ hS(ψ).

Proof. Fix x ∈ S and find y ∈ T with x = α(y). Then cn(x, φ) ≤ cn(ψ, y) for
every n ∈ N+. Dividing by n and taking the limit gives hS(φ, x) ≤ hS(ψ, y).
So hS(φ, x) ≤ hS(ψ). When x runs over S, we conclude that hS(φ) ≤ hS(ψ).

QED

Corollary 1 (Invariance under conjugation). Let S be a normed semigroup
and φ : S → S an endomorphism. If α : S → T is an isomorphism, then
hS(φ) = hS(α ◦ φ ◦ α−1).

Lemma 4 (Invariance under inversion). Let S be a normed semigroup and
φ : S → S an automorphism. Then hS(φ−1) = hS(φ).

Theorem 2 (Logarithmic Law). Let (S, v) be a normed semigroup and φ :
S → S an endomorphism. Then

hS(φk) ≤ k · hS(φ)

for every k ∈ N+. Furthermore, equality holds if v is s-monotone. Moreover, if
φ : S → S is an automorphism, then

hS(φk) = |k| · hS(φ)

for all k ∈ Z \ {0}.

Proof. Fix k ∈ N+, x ∈ S and let y = x · φ(x) · . . . · φk−1(x). Then

hS(φk) ≥ hS(φk, y) = lim
n→∞

cn(φk, y)

n
= lim

n→∞

v(y · φk(y) · . . . · φ(n−1)k(y))

n
=

= k · lim
n→∞

cnk(φ, x)

nk
= k · hS(φ, x).

This yields hS(φk) ≥ k · hS(φ, x) for all x ∈ S, and consequently, hS(φk) ≥
k · hS(φ).

Suppose v to be s-monotone, then

hS(φ, x) = lim
n→∞

v(x · φ(x) · . . . · φnk−1(x))

n · k ≥

lim
n→∞

v(x · φk(x) · . . . · (φk)n−1(x))

n · k =
hS(φk, x)

k
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Hence, k · hS(φ) ≥ hS(φk, x) for every x ∈ S. Therefore, k · hS(φ) ≥ hS(φk).
If φ is an automorphism and k ∈ Z \ {0}, apply the previous part of the

theorem and Lemma 4. QED

The next lemma shows that monotonicity is available not only under taking
factors:

Lemma 5 (Monotonicity for subsemigroups). Let (S, v) be a normed semi-
group and φ : S → S an endomorphism. If T is a φ-invariant normed subsemi-
group of (S, v), then hS(φ) ≥ hS(φ ↾T ). Equality holds if S is ordered, v is
monotone and T is cofinal in S.

Note that T is equipped with the induced norm v ↾T . The same applies to
the subsemigroups Si in the next corollary:

Corollary 2 (Continuity for direct limits). Let (S, v) be a normed semi-
group and φ : S → S an endomorphism. If {Si : i ∈ I} is a directed family
of φ-invariant normed subsemigroup of (S, v) with S = lim−→Si, then hS(φ) =
suphS(φ ↾Si

).

We consider now products in S. Let {(Si, vi) : i ∈ I} be a family of normed
semigroups and let S =

∏
i∈I Si be their direct product in the category of

semigroups.
In case I is finite, then S becomes a normed semigroup with the max-norm

v∏ , so (S, v∏) is the product of the family {Si : i ∈ I} in the category S; in
such a case one has the following

Theorem 3 (Weak Addition Theorem - products). Let (Si, vi) be a normed
semigroup and φi : Si → Si an endomorphism for i = 1, 2. Then the endomor-
phism φ1 × φ2 of S1 × S2 has hS(φ1 × φ2) = max{hS(φ1), hS(φ2)}.

If I is infinite, S need not carry a semigroup norm v such that every pro-
jection pi : (S, v) → (Si, vi) is a morphism in S. This is why the product of the
family {(Si, vi) : i ∈ I} in S is actually the subset

Sbnd = {x = (xi)i∈I ∈ S : sup
i∈I

vi(xi) ∈ R}

of S with the norm v∏ defined by

v∏(x) = sup
i∈I

vi(xi) for any x = (xi)i∈I ∈ Sbnd.

For further details in this direction see [27].

2.4 Entropy in M

We collect here some additional properties of the semigroup entropy in the
category M of normed monoids where also coproducts are available. If (Si, vi)
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Since the first and the last summand do not depend on n, after dividing by n
and letting n converge to infinity we obtain

hS(βM , x) = lim
n→∞

v⊕(Tn(βM , x))

n
≤ v(x1 · . . . · xk) ≤ sup

x∈M
v(x).

(b) Note that Mβ is locally nilpotent and apply Lemma 2. QED

2.5 Semigroup entropy of an element and pseudonormed semi-

groups

One can notice a certain asymmetry in Definition 6. Indeed, for S a normed
semigroup, the local semigroup entropy defined in (3) is a two variable function

hS : End(S) × S → R+.

Taking hS(φ) = supx∈S hS(φ, x) for an endomorphism φ ∈ End(S), we obtained
the notion of semigroup entropy of φ. But one can obviously exchange the roles
of φ and x and obtain the possibility to discuss the entropy of an element x ∈ S.
This can be done in two ways. Indeed, in Remark 2 we consider what seems
the natural counterpart of hS(φ), while here we discuss a particular case that
could appear to be almost trivial, but actually this is not the case, as it permits
to give a uniform approach to some entropies which are not defined by using
trajectories. So, by taking φ = idS in (3), we obtain a map h0

S : S → R+:

Definition 7. Let S be a normed semigroup and x ∈ S. The semigroup
entropy of x is

h0
S(x) := hS(idS , x) = lim

n→∞

v(xn)

n
.

We shall see now that the notion of semigroup entropy of an element is
supported by many examples. On the other hand, since some of the examples
given below cannot be covered by our scheme, we propose first a slight extension
that covers those examples as well.

Let S∗ be the category having as objects of all pairs (S, v), where S is a
semigroup and v : S → R+ is an arbitrary map. A morphism in the category
S∗ is a semigroup homomorphism φ : (S, v) → (S′, v′) that is contracting with
respect to the pair v, v′, i.e., v′(φ(x)) ≤ v(x) for every x ∈ S. Note that
our starting category S is simply a full subcategory of S∗, having as objects
those pairs (S, v) such that v satisfies (i) from Definition 2. These pairs were
called normed semigroups and v was called a semigroup norm. For the sake of
convenience and in order to keep close to the current terminology, let us call the
function v in the larger category S∗ a semigroup pseudonorm (although, we are
imposing no condition on v whatsoever).

15

is a normed monoid for every i ∈ I, the direct sum

S =
⊕

i∈I

Si = {(xi) ∈
∏

i∈I

Si : |{i ∈ I : xi �= 1}| < ∞}

becomes a normed monoid with the norm

v⊕(x) =
∑

i∈I

vi(xi) for any x = (xi)i∈I ∈ S.

This definition makes sense since vi are monoid norms, so vi(1) = 0. Hence,
(S, v⊕) becomes a coproduct of the family {(Si, vi) : i ∈ I} in M.

We consider now the case when I is finite, so assume without loss of gen-
erality that I = {1, 2}. In other words we have two normed monoids (S1, v1)
and (S2, v2). The product and the coproduct have the same underlying monoid
S = S1 ×S2, but the norms v⊕ and v∏ in S are different and give different val-
ues of the semigroup entropy hS; indeed, compare Theorem 3 and the following
one.

Theorem 4 (Weak Addition Theorem - coproducts). Let (Si, vi) be a normed
monoid and φi : Si → Si an endomorphism for i = 1, 2. Then the endomor-
phism φ1 ⊕ φ2 of S1 ⊕ S2 has hS(φ1 ⊕ φ2) = hS(φ1) + hS(φ2).

For a normed monoid (M, v) ∈ M let B(M) =
⊕

N M , equipped with the
above coproduct norm v⊕(x) =

∑
n∈N v(xn) for any x = (xn)n∈N ∈ B(M). The

right Bernoulli shift is defined by

βM : B(M) → B(M), βM (x0, . . . , xn, . . . ) = (1, x0, . . . , xn, . . . ),

while the left Bernoulli shift is

Mβ : B(M) → B(M), Mβ(x0, x1, . . . , xn, . . . ) = (x1, x2, . . . , xn, . . . ).

Theorem 5 (Bernoulli normalization). Let (M, v) be a normed monoid.
Then:

(a) hS(βM ) = supx∈M v(x);

(b) hS(Mβ) = 0.

Proof. (a) For x ∈ M consider x = (xn)n∈N ∈ B(M) such that x0 = x and
xn = 1 for every n ∈ N+. Then v⊕(Tn(βM , x)) = n · v(x), so hS(βM , x) = v(x).
Hence hS(βM ) ≥ supx∈M v(x). Let now x = (xn)n∈N ∈ B(M) and let k ∈ N be
the greatest index such that xk �= 1; then

v⊕(Tn(βM , x)) =
k+n∑

i=0

v(Tn(βM , x)i) ≤

k−1∑

i=0

v(x0 · . . . · xi) + (n − k) · v(x1 · . . . · xk) +
k∑

i=1

v(xi · . . . · xk).

14
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Hence hS(βM ) ≥ supx∈M v(x). Let now x = (xn)n∈N ∈ B(M) and let k ∈ N be
the greatest index such that xk �= 1; then
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So, in this setting, one can define a local semigroup entropy hS∗ : End(S)×
S → R+ following the pattern of (3), replacing the limit by

hS∗(φ, x) = lim sup
n→∞

v(Tn(φ, x))

n
.

In particular,

h0
S∗(x) = lim sup

n→∞

v(xn)

n
.

Let us note that in order to have the last lim sup a limit, one does not need
(S, v) to be in S, but it suffices to have the semigroup norm condition (i) from
Definition 2 fulfilled only for products of powers of the same element.

We consider here three different entropies, respectively from [55], [32] and
[73], that can be described in terms of h0

S or its generalized version h0
S∗ . We do

not go into the details, but we give the idea how to capture them using the notion
of semigroup entropy of an element of the semigroup of all endomorphisms of a
given object equipped with an appropriate semigroup (pseudo)norm.

(a) Following [55], let R be a Noetherian local ring and φ : R → R an endo-
morphism of finite length; moreover, λ(φ) is the length of φ, which is a
real number ≥ 1. In this setting the entropy of φ is defined by

hλ(φ) = lim
n→∞

log λ(φn)

n

and it is proved that this limit exists.

Then the set S = Endfl(R) of all finite-length endomorphisms of R is a
semigroup and log λ(−) is a semigroup norm on S. For every φ ∈ S, we
have

hλ(φ) = hS(idS , φ) = h0
S(φ).

In other words, hλ(φ) is nothing else but the semigroup entropy of the
element φ of the normed semigroup S = Endfl(R).

(b) We recall now the entropy considered in [73], which was already introduced
in [7]. Let t ∈ N+ and ϕ : Pt → Pt be a dominant rational map of degree
d. Then the entropy of ϕ is defined as the logarithm of the dynamical
degree, that is

hδ(ϕ) = log δφ = lim sup
n→∞

log deg(ϕn)

n
.
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Consider the semigroup S of all dominant rational maps of Pn and the
function log deg(−). In general this is only a semigroup pseudonorm on S
and

h0
S∗(ϕ) = hδ(ϕ).

Note that log deg(−) is a semigroup norm when ϕ is an endomorphism of
the variety Pt.

(c) We consider now the growth rate for endomorphisms introduced in [10]
and recently studied in [32]. Let G be a finitely generated group, X a
finite symmetric set of generators of G, and ϕ : G → G an endomorphism.
For g ∈ G, denote by ℓX(g) the length of g with respect to the alphabet
X. The growth rate of ϕ with respect to x ∈ X is

log GR(ϕ, x) = lim
n→∞

log ℓX(ϕn(x))

n

(and the growth rate of ϕ is log GR(ϕ) = supx∈X log GR(ϕ, x)).

Consider S = End(G) and, fixed x ∈ X, the map log GR(−, x). As in
item (b) this is only a semigroup pseudonorm on S. Nevertheless, also in
this case the semigroup entropy

log GR(ϕ, x) = h0
S∗(ϕ).

Remark 2. For a normed semigroup S, let hS : End(S) × S → R+ be the
local semigroup entropy defined in (3). Exchanging the roles of φ ∈ End(S) and
x ∈ S, define the global semigroup entropy of an element x ∈ S by

hS(x) = sup
φ∈End(S)

hS(φ, x).

Obviously, h0
S(x) ≤ hS(x) for every x ∈ S.

3 Obtaining known entropies

3.1 The general scheme

Let X be a category and let F : X → S be a functor. Define the entropy

hF : X → R+

on the category X by

hF (φ) = hS(F (φ)),
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in [5] and [20] respectively. We also recall that they are related to invariants for
self-maps of sets introduced in [34] and [3] respectively.

A natural semilattice with zero, arising from a set X, is the family (S(X),∪)
of all finite subsets of X with neutral element ∅. Moreover the map defined by
v(A) = |A| for every A ∈ S(X) is an s-monotone norm. So let atr(X) =
(S(X),∪, v). Consider now a map λ : X → Y between sets and define atr(λ) :
S(X) → S(Y ) by A �→ λ(A) for every A ∈ S(X). This defines a covariant
functor

atr : Set → S

such that
hatr = h.

Consider now a finite-to-one map λ : X → Y . As above let str(X) =
(S(X),∪, v), while str(λ) : str(Y ) → str(X) is given by A �→ λ−1(A) for every
A ∈ S(Y ). This defines a contravariant functor

str : Setfin → S

such that
hstr = h∗.

3.3 Topological entropy for compact spaces

In this subsection we consider in the general scheme the topological entropy
htop introduced in [1] for continuous self-maps of compact spaces. So we specify
the general scheme for the category X = CTop of compact spaces and contin-
uous maps, constructing the functor cov : CTop → S.

For a topological space X let cov(X) be the family of all open covers U of
X, where it is allowed ∅ ∈ U . For U ,V ∈ cov(X) let U ∨ V = {U ∩ V : U ∈
U , V ∈ V} ∈ cov(X). One can easily prove commutativity and associativity of
∨; moreover, let E = {X} denote the trivial cover. Then

(cov(X),∨, E) is a commutative monoid.

For a topological space X, one has a natural preorder U ≺ V on cov(X);
indeed, V refines U if for every V ∈ V there exists U ∈ U such that V ⊆ U .
Note that this preorder has bottom element E , and that it is not an order. In
general, U ∨ U �= U , yet U ∨ U ∼ U , and more generally

U ∨ U ∨ . . . ∨ U ∼ U . (4)

For X, Y topological spaces, a continuous map φ : X → Y and U ∈ cov(Y ),
let φ−1(U) = {φ−1(U) : U ∈ U}. Then, as φ−1(U ∨ V) = φ−1(U) ∨ φ−1(V), we
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for any endomorphism φ : X → X in X. Recall that with some abuse of notation
we write hF : X → R+ in place of hF : FlowX → R+ for simplicity.

Since the functor F preserves commutative squares and isomorphisms, the
entropy hF has the following properties, that automatically follow from the
previously listed properties of the semigroup entropy hS. For the details and
for properties that need a further discussion see [27].

Let X, Y be objects of X and φ : X → X, ψ : Y → Y endomorphisms in X.

(a) [Invariance under conjugation] If α : X → Y is an isomorphism in X, then
hF (φ) = hF (α ◦ φ ◦ α−1).

(b) [Invariance under inversion] If φ : X → X is an automorphism in X, then
hF (φ−1) = hF (φ).

(c) [Logaritmic Law] If the norm of F (X) is s-monotone, then hF (φk) =
k · hF (φ) for all k ∈ N+.

Other properties of hF depend on properties of the functor F .

(d) [Monotonicity for invariant subobjects] If F sends subobject embeddings
in X to embeddings in S or to surjective maps in S, then, if Y is a
φ-invariant subobject of X, we have hF (φ ↾Y ) ≤ hF (φ).

(e) [Monotonicity for factors] If F sends factors in X to surjective maps in S

or to embeddings in S, then, if α : T → S is an epimorphism in X such
that α ◦ ψ = φ ◦ α, then hF (φ) ≤ hF (ψ).

(f) [Continuity for direct limits] If F is covariant and sends direct limits to
direct limits, then hF (φ) = supi∈I hF (φ ↾Xi

) whenever X = lim−→Xi and
Xi is a φ-invariant subobject of X for every i ∈ I.

(g) [Continuity for inverse limits] If F is contravariant and sends inverse limits
to direct limits, then hF (φ) = supi∈I hF (φi) whenever X = lim←−Xi and
(Xi, φi) is a factor of (X, φ) for every i ∈ I.

In the following subsections we describe how the known entropies can be
obtained from this general scheme. For all the details we refer to [27]

3.2 Set-theoretic entropy

In this section we consider the category Set of sets and maps and its (non-
full) subcategory Setfin having as morphisms all the finitely many-to-one maps.
We construct a functor atr : Set → S and a functor str : Setfin → S, which give
the set-theoretic entropy h and the covariant set-theoretic entropy h∗, introduced

18
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Moreover, for ξ = {A1, A2, . . . , Ak} ∈ P(X) the entropy of ξ is given by Boltz-
mann’s Formula

v(ξ) = −
k∑

i=1

µ(Ak) log µ(Ak).

This is a monotone semigroup norm making P(X) a normed semilattice and a
normed monoid.

Consider now a measure preserving map T : X → Y . For a cover ξ =
{Ai}k

i=1 ∈ P(Y ) let T−1(ξ) = {T−1(Ai)}k
i=1. Since T is measure preserving,

one has T−1(ξ) ∈ P(X) and µ(T−1(Ai)) = µ(Ai) for all i = 1, . . . , k. Hence,
v(T−1(ξ)) = v(ξ) and so

mes(T ) : P(Y ) → P(X), defined by ξ �→ T−1(ξ), is a morphism in SL.

Therefore the assignments X �→ P(X) and T �→ mes(T ) define a contravariant
functor

mes : MesSp → SL .

Moreover,
hmes = hmes.

The functor mes : MesSp → SL is covariant and sends embeddings in
MesSp to surjective morphisms in SL and sends surjective maps in MesSp to
embeddings in SL. Hence, similarly to htop, also the measure-theoretic entropy
hmes is monotone for factors and restrictions to invariant subspaces, continuous
for inverse limits, is invariant under conjugation and inversion, satisfies the
Logarithmic Law and the Weak Addition Theorem.

In the next remark we briefly discuss the connection between measure en-
tropy and topological entropy.

Remark 3. (a) If X is a compact metric space and φ : X → X is a
continuous surjective self-map, by Krylov-Bogolioubov Theorem [9] there
exist some φ-invariant Borel probability measures µ on X (i.e., making
φ : (X, µ) → (X, µ) measure preserving). Denote by hµ the measure
entropy with respect to the measure µ. The inequality hµ(φ) ≤ htop(φ)
for every µ ∈ M(X, φ) is due to Goodwyn [41]. Moreover the variational
principle (see [84, Theorem 8.6]) holds true:

htop(φ) = sup{hµ(φ) : µ φ-invariant measure on X}.

(b) In the computation of the topological entropy it is possible to reduce to
surjective continuous self-maps of compact spaces. Indeed, for a com-
pact space X and a continuous self-map φ : X → X, the set Eφ(X) =⋂

n∈N φn(X) is closed and φ-invariant, the map φ ↾Eφ(X): Eφ(X) → Eφ(X)
is surjective and htop(φ) = htop(φ ↾Eφ(X)) (see [84]).
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have that cov(φ) : cov(Y ) → cov(X), defined by U �→ φ−1(U), is a semigroup
homomorphism. This defines a contravariant functor cov from the category of
all topological spaces to the category of commutative semigroups.

To get a semigroup norm on cov(X) we restrict this functor to the sub-
category CTop of compact spaces. For a compact space X and U ∈ cov(X),
let

M(U) = min{|V| : V a finite subcover of U} and v(U) = log M(U).

Now (4) gives v(U ∨ U ∨ . . . ∨ U) = v(U), so

(cov(X),∨, v) is an arithmetic normed semigroup.

For every continuous map φ : X → Y of compact spaces and W ∈ cov(Y ),
the inequality v(φ−1(W)) ≤ v(W) holds. Consequently

cov(φ) : cov(Y ) → cov(X), defined by W �→ φ−1(W), is a morphism in S.

Therefore the assignments X �→ cov(X) and φ �→ cov(φ) define a contravariant
functor

cov : CTop → S.

Moreover,

hcov = htop.

Since the functor cov takes factors in CTop to embeddings in S, embeddings
in CTop to surjective morphisms in S, and inverse limits in CTop to direct
limits in S, we have automatically that the topological entropy htop is monotone
for factors and restrictions to invariant subspaces, continuous for inverse limits,
is invariant under conjugation and inversion, and satisfies the Logarithmic Law.

3.4 Measure entropy

In this subsection we consider the category MesSp of probability measure
spaces (X, B, µ) and measure preserving maps, constructing a functor mes :
MesSp → S in order to obtain from the general scheme the measure entropy
hmes from [53] and [74].

For a measure space (X, B, µ) let P(X) be the family of all measurable
partitions ξ = {A1, A2, . . . , Ak} of X. For ξ, η ∈ P(X) let ξ ∨ η = {U ∩ V : U ∈
ξ, V ∈ η}. As ξ ∨ ξ = ξ, with zero the cover ξ0 = {X},

(P(X),∨) is a semilattice with 0.
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(c) In the case of a compact group K and a continuous surjective endomor-
phism φ : K → K, the group K has its unique Haar measure and so φ is
measure preserving as noted by Halmos [49]. In particular both htop and
hmes are available for surjective continuous endomorphisms of compact
groups and they coincide as proved in the general case by Stoyanov [75].

In other terms, denote by CGrp the category of all compact groups and
continuous homomorphisms, and by CGrpe the non-full subcategory of
CGrp, having as morphisms all epimorphisms in CGrp. So in the fol-
lowing diagram we consider the forgetful functor V : CGrpe → Mes,
while i is the inclusion of CGrpe in CGrp as a non-full subcategory and
U : CGrp → Top is the forgetful functor:

CGrpe
i ��

V
��

CGrp
U �� Top

Mes

For a surjective endomorphism φ of the compact group K, we have then
hmes(V (φ)) = htop(U(φ)).

3.5 Algebraic entropy

Here we consider the category Grp of all groups and their homomorphisms
and its subcategory AbGrp of all abelian groups. We construct two functors
sub : AbGrp → SL and pet : Grp → S that permits to find from the general
scheme the two algebraic entropies ent and halg. For more details on these
entropies see the next section.

Let G be an abelian group and let (F(G), ·) be the semilattice consisting of
all finite subgroups of G. Letting v(F ) = log |F | for every F ∈ F(G), then

(F(G), ·, v) is a normed semilattice

and the norm v is monotone.
For every group homomorphism φ : G → H,

the map F(φ) : F(G) → F(H), defined by F �→ φ(F ), is a morphism in SL.

Therefore the assignments G �→ F(G) and φ �→ F(φ) define a covariant functor

sub : AbGrp → SL .

Moreover
hsub = ent .
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Since the functor sub takes factors in AbGrp to surjective morphisms in
S, embeddings in AbGrp to embeddings in S, and direct limits in AbGrp

to direct limits in S, we have automatically that the algebraic entropy ent is
monotone for factors and restrictions to invariant subspaces, continuous for di-
rect limits, invariant under conjugation and inversion, satisfies the Logarithmic
Law.

For a group G let H(G) be the family of all finite non-empty subsets of
G. Then H(G) with the operation induced by the multiplication of G is a
monoid with neutral element {1}. Moreover, letting v(F ) = log |F | for every
F ∈ H(G) makes H(G) a normed semigroup. For an abelian group G the
monoid H(G) is arithmetic since for any F ∈ H(G) the sum of n summands
satisfies |F + . . .+F | ≤ (n+1)|F |. Moreover, (H(G),⊆) is an ordered semigroup
and the norm v is s-monotone.

For every group homomorphism φ : G → H,

the map H(φ) : H(G) → H(H), defined by F �→ φ(F ), is a morphism in S.

Consequently the assignments G �→ (H(G), v) and φ �→ H(φ) give a covariant
functor

pet : Grp → S.

Hence
hpet = halg.

Note that the functor sub is a subfunctor of pet : AbGrp → S as F(G) ⊆ H(G)
for every abelian group G.

As for the algebraic entropy ent, since the functor pet takes factors in Grp to
surjective morphisms in S, embeddings in Grp to embeddings in S, and direct
limits in Grp to direct limits in S, we have automatically that the algebraic
entropy halg is monotone for factors and restrictions to invariant subspaces,
continuous for direct limits, invariant under conjugation and inversion, satisfies
the Logarithmic Law.

3.6 htop and halg in locally compact groups

As mentioned above, Bowen introduced topological entropy for uniformly
continuous self-maps of metric spaces in [11]. His approach turned out to be es-
pecially efficient in the case of locally compact spaces provided with some Borel
measure with good invariance properties, in particular for continuous endomor-
phisms of locally compact groups provided with their Haar measure. Later
Hood in [51] extended Bowen’s definition to uniformly continuous self-maps of
arbitrary uniform spaces and in particular to continuous endomorphisms of (not
necessarily metrizable) locally compact groups.

23



23

(c) In the case of a compact group K and a continuous surjective endomor-
phism φ : K → K, the group K has its unique Haar measure and so φ is
measure preserving as noted by Halmos [49]. In particular both htop and
hmes are available for surjective continuous endomorphisms of compact
groups and they coincide as proved in the general case by Stoyanov [75].

In other terms, denote by CGrp the category of all compact groups and
continuous homomorphisms, and by CGrpe the non-full subcategory of
CGrp, having as morphisms all epimorphisms in CGrp. So in the fol-
lowing diagram we consider the forgetful functor V : CGrpe → Mes,
while i is the inclusion of CGrpe in CGrp as a non-full subcategory and
U : CGrp → Top is the forgetful functor:

CGrpe
i ��

V
��

CGrp
U �� Top

Mes

For a surjective endomorphism φ of the compact group K, we have then
hmes(V (φ)) = htop(U(φ)).

3.5 Algebraic entropy

Here we consider the category Grp of all groups and their homomorphisms
and its subcategory AbGrp of all abelian groups. We construct two functors
sub : AbGrp → SL and pet : Grp → S that permits to find from the general
scheme the two algebraic entropies ent and halg. For more details on these
entropies see the next section.

Let G be an abelian group and let (F(G), ·) be the semilattice consisting of
all finite subgroups of G. Letting v(F ) = log |F | for every F ∈ F(G), then

(F(G), ·, v) is a normed semilattice

and the norm v is monotone.
For every group homomorphism φ : G → H,

the map F(φ) : F(G) → F(H), defined by F �→ φ(F ), is a morphism in SL.

Therefore the assignments G �→ F(G) and φ �→ F(φ) define a covariant functor

sub : AbGrp → SL .

Moreover
hsub = ent .

22

Since the functor sub takes factors in AbGrp to surjective morphisms in
S, embeddings in AbGrp to embeddings in S, and direct limits in AbGrp

to direct limits in S, we have automatically that the algebraic entropy ent is
monotone for factors and restrictions to invariant subspaces, continuous for di-
rect limits, invariant under conjugation and inversion, satisfies the Logarithmic
Law.

For a group G let H(G) be the family of all finite non-empty subsets of
G. Then H(G) with the operation induced by the multiplication of G is a
monoid with neutral element {1}. Moreover, letting v(F ) = log |F | for every
F ∈ H(G) makes H(G) a normed semigroup. For an abelian group G the
monoid H(G) is arithmetic since for any F ∈ H(G) the sum of n summands
satisfies |F + . . .+F | ≤ (n+1)|F |. Moreover, (H(G),⊆) is an ordered semigroup
and the norm v is s-monotone.

For every group homomorphism φ : G → H,

the map H(φ) : H(G) → H(H), defined by F �→ φ(F ), is a morphism in S.

Consequently the assignments G �→ (H(G), v) and φ �→ H(φ) give a covariant
functor

pet : Grp → S.

Hence
hpet = halg.

Note that the functor sub is a subfunctor of pet : AbGrp → S as F(G) ⊆ H(G)
for every abelian group G.

As for the algebraic entropy ent, since the functor pet takes factors in Grp to
surjective morphisms in S, embeddings in Grp to embeddings in S, and direct
limits in Grp to direct limits in S, we have automatically that the algebraic
entropy halg is monotone for factors and restrictions to invariant subspaces,
continuous for direct limits, invariant under conjugation and inversion, satisfies
the Logarithmic Law.

3.6 htop and halg in locally compact groups

As mentioned above, Bowen introduced topological entropy for uniformly
continuous self-maps of metric spaces in [11]. His approach turned out to be es-
pecially efficient in the case of locally compact spaces provided with some Borel
measure with good invariance properties, in particular for continuous endomor-
phisms of locally compact groups provided with their Haar measure. Later
Hood in [51] extended Bowen’s definition to uniformly continuous self-maps of
arbitrary uniform spaces and in particular to continuous endomorphisms of (not
necessarily metrizable) locally compact groups.

23



24

On the other hand, Virili [80] extended the notion of algebraic entropy
to continuous endomorphisms of locally compact abelian groups, inspired by
Bowen’s definition of topological entropy (based on the use of Haar measure).
As mentioned in [20], his definition can be extended to continuous endomor-
phisms of arbitrary locally compact groups.

Our aim here is to show that both entropies can be obtained from our general
scheme in the case of measure preserving topological automorphisms of locally
compact groups. To this end we recall first the definitions of htop and halg in
locally compact groups. Let G be a locally compact group, let C(G) be the
family of all compact neighborhoods of 1 and µ be a right Haar measure on G.
For a continuous endomorphism φ : G → G, U ∈ C(G) and a positive integer n,
the n-th cotrajectory Cn(φ, U) = U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U) is still in C(G).
The topological entropy htop is intended to measure the rate of decay of the
n-th cotrajectory Cn(φ, U). So let

Htop(φ, U) = lim sup
n→∞

− log µ(Cn(φ, U))

n
, (5)

which does not depend on the choice of the Haar measure µ. The topological
entropy of φ is

htop(φ) = sup{Htop(φ, U) : U ∈ C(G)}.

If G is discrete, then C(G) is the family of all finite subsets of G containing 1,
and µ(A) = |A| for subsets A of G. So Htop(φ, U) = 0 for every U ∈ C(G),
hence htop(φ) = 0.

To define the algebraic entropy of φ with respect to U ∈ C(G) one uses the
n-th φ-trajectory Tn(φ, U) = U · φ(U) · . . . · φn−1(U) of U , that still belongs to
C(G). It turns out that the value

Halg(φ, U) = lim sup
n→∞

log µ(Tn(φ, U))

n
(6)

does not depend on the choice of µ. The algebraic entropy of φ is

halg(φ) = sup{Halg(φ, U) : U ∈ C(G)}.

The term “algebraic” is motivated by the fact that the definition of Tn(φ, U)
(unlike Cn(φ, U)) makes use of the group operation.

As we saw above (6) is a limit when G is discrete. Moreover, if G is compact,
then halg(φ) = Halg(φ, G) = 0.

In the sequel, G will be a locally compact group. We fix also a measure
preserving topological automorphism φ : G → G.
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To obtain the entropy htop(φ) via semigroup entropy fix some V ∈ C(G)
with µ(V ) ≤ 1. Then consider the subset

C0(G) = {U ∈ C(G) : U ⊆ V }.

Obviously, C0(G) is a monoid with respect to intersection, having as neutral
element V . To obtain a pseudonorm v on C0(G) let v(U) = − log µ(U) for any
U ∈ C0(G). Then φ defines a semigroup isomorphism φ# : C0(G) → C0(G) by
φ#(U) = φ−1(U) for any U ∈ C0(G). It is easy to see that φ# : C0(G) → C0(G)
is a an automorphism in S∗ and the semigroup entropy hS∗(φ#) coincides with
htop(φ) since Htop(φ, U) ≤ Htop(φ, U ′) whenever U ⊇ U ′.

To obtain the entropy halg(φ) via semigroup entropy fix some W ∈ C(G)
with µ(W ) ≥ 1. Then consider the subset

C1(G) = {U ∈ C(G) : U ⊇ W}

of the set C(G). Note that for U1, U2 ∈ C1(G) also U1U2 ∈ C1(G). Thus C1(G)
is a semigroup. To define a pseudonorm v on C1(G) let v(U) = log µ(U) for any
U ∈ C1(G). Then φ defines a semigroup isomorphism φ# : C1(G) → C1(G) by
φ#(U) = φ(U) for any U ∈ C1(G). It is easy to see that φ# : C1(G) → C1(G) is
a morphism in S∗ and the semigroup entropy hS∗(φ#) coincides with halg(φ),
since C1(G) is cofinal in C(G) and Halg(φ, U) ≤ Halg(φ, U ′) whenever U ⊆ U ′.

Remark 4. We asked above the automorphism φ to be “measure preserv-
ing”. In this way one rules out many interesting cases of topological automor-
phisms that are not measure preserving (e.g., all automorphisms of R beyond
± idR). This condition is imposed in order to respect the definition of the mor-
phisms in S∗. If one further relaxes this condition on the morphisms in S∗

(without asking them to be contracting maps with respect to the pseudonorm),
then one can obtain a semigroup entropy that covers the topological and the
algebraic entropy of arbitrary topological automorphisms of locally compact
groups (see [26] for more details).

3.7 Algebraic i-entropy

For a ring R we denote by mod R the category of right R-modules and R-
module homomorphisms. We consider here the algebraic i-entropy introduced
in [70], giving a functor subi : mod R → SL, to find enti from the general
scheme. Here i : mod R → R+ is an invariant of mod R (i.e., i(0) = 0 and
i(M) = i(N) whenever M ∼= N). Consider the following conditions:

(a) i(N1 + N2) ≤ i(N1) + i(N2) for all submodules N1, N2 of M ;

(b) i(M/N) ≤ i(M) for every submodule N of M ;
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the map Fd(φ) : Fd(V ) → Fd(W ), defined by H �→ φ(H), is a morphism in SL.

Therefore, the assignments M �→ Fd(M) and φ �→ Fd(φ) define a covariant
functor

subd : mod K → SL .

Then

hsubd
= entdim .

Note that this entropy can be computed ad follows. Every flow φ : V → V of
mod K can be considered as a K[X]-module Vφ letting X act on V as φ. Then
hsubd

(φ) coincides with the rank of the K[X]-module Vφ.

3.8 Adjoint algebraic entropy

We consider now again the category Grp of all groups and their homomor-
phisms, giving a functor sub⋆ : Grp → SL such that the entropy defined using
this functor coincides with the adjoint algebraic entropy ent⋆ introduced in [24].

For a group G denote by C(G) the family of all subgroups of finite index in
G. It is a subsemilattice of (L(G),∩). For N ∈ C(G), let

v(N) = log[G : N ];

then

(C(G), v) is a normed semilattice,

with neutral element G; moreover the norm v is monotone.

For every group homomorphism φ : G → H

the map C(φ) : C(H) → C(G), defined by N �→ φ−1(N), is a morphism in S.

Then the assignments G �→ C(G) and φ �→ C(φ) define a contravariant functor

sub⋆ : Grp → SL .

Moreover

hsub⋆ = ent⋆ .

There exists also a version of the adjoint algebraic entropy for modules,
namely the adjoint algebraic i-entropy ent⋆

i (see [79]), which can be treated
analogously.
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(b∗) i(N) ≤ i(M) for every submodule N of M .

The invariant i is called subadditive if (a) and (b) hold, and it is called preadditive
if (a) and (b∗) hold.

For M ∈ mod R denote by L(M) the lattice of all submodules of M . The
operations are intersection and sum of two submodules, the bottom element is
{0} and the top element is M . Now fix a subadditive invariant i of mod R and
for a right R-module M let

Fi(M) = {submodules N of M with i(M) < ∞},

which is a subsemilattice of L(M) ordered by inclusion. Define a norm on Fi(M)
setting

v(H) = i(H)

for every H ∈ Fi(M). The norm v is not necessarily monotone (it is monotone
if i is both subadditive and preadditive).

For every homomorphism φ : M → N in mod R,

Fi(φ) : Fi(M) → Fi(N), defined by Fi(φ)(H) = φ(H), is a morphism in SL.

Moreover the norm v makes the morphism Fi(φ) contractive by the property
(b) of the invariant. Therefore, the assignments M �→ Fi(M) and φ �→ Fi(φ)
define a covariant functor

subi : mod R → SL .

We can conclude that, for a ring R and a subadditive invariant i of mod R,

hsubi
= enti .

If i is preadditive, the functor subi sends monomorphisms to embeddings
and so enti is monotone under taking submodules. If i is both subadditive and
preadditive then for every R-module M the norm of subi(M) is s-monotone, so
enti satisfies also the Logarithmic Law. In general this entropy is not monotone
under taking quotients, but this can be obtained with stronger hypotheses on i
and with some restriction on the domain of subi.

A clear example is given by vector spaces; the algebraic entropy entdim for
linear transformations of vector spaces was considered in full details in [36]:

Example 4. Let K be a field. Then for every K-vector space V let Fd(M)
be the set of all finite-dimensional subspaces N of M .

Then (Fd(V ),+) is a subsemilattice of (L(V ),+) and v(H) = dim H defines
a monotone norm on Fd(V ). For every morphism φ : V → W in mod K
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3.9 Topological entropy for totally disconnected compact groups

Let (G, τ) be a totally disconnected compact group and consider the filter
base VG(1) of open subgroups of G. Then

(VG(1),∩) is a normed semilattice

with neutral element G ∈ VG(1) and norm defined by vo(V ) = log[G : V ] for
every V ∈ VG(1).

For a continuous homomorphism φ : G → H between compact groups,

the map VH(1) → VG(1), defined by V �→ φ−1(V ), is a morphism in SL.

This defines a contravariant functor

sub⋆
o : TdCGrp → SL,

which is a subfunctor of sub⋆.
Then the entropy hsub⋆

o
coincides with the restriction to TdCGrp of the

topological entropy htop.
This functor is related also to the functor cov : TdCGrp → S. Indeed,

let G be a totally disconnected compact group. Each V ∈ VG(1) defines a
cover UV = {x · V }x∈G of G with vo(V ) = v(UV ). So the map V �→ UV

defines an isomorphism between the normed semilattice sub⋆
o(G) = VG(1) and

the subsemigroup covs(G) = {UV : V ∈ VG(1)} of cov(G).

3.10 Bridge Theorem

In Definition 1 we have formalized the concept of Bridge Theorem between
entropies h1 : X1 → R+ and h2 : X2 → R+ via functors ε : X1 → X2. Obviously,
the Bridge Theorem with respect to the functor ε is available when each hi has
the form hi = hFi
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In particular the Pontryagin duality functor ̂: AbGrp → CAbGrp con-
nects the category of abelian groups and that of compact abelian groups so
connects the respective entropies halg and htop by a Bridge Theorem. Taking
the restriction to torsion abelian groups and the totally disconnected compact
groups one obtains:

Theorem 6 (Weiss Bridge Theorem). [85] Let K be a totally disconnected
compact abelian group and φ : K → K a continuous endomorphism. Then
htop(φ) = ent(φ̂).

Proof. Since totally disconnected compact groups are zero-dimensional, every
open finite cover U of K admits a refinement consisting of clopen sets in K.
Moreover, since K admits a local base at 0 formed by open subgroups, it is
possible to find a refinement of U of the form UV for some open subgroup V.
This proves that covs(K) is cofinal in cov(K). Hence, we have

htop(φ) = hS(cov(φ)) = hS(covs(φ)).

Moreover, we have seen above that covs(K) is isomorphic to sub⋆
o(K), so one

can conclude that

hS(covs(φ)) = hS(sub⋆
o(φ)).

Now the semilattice isomorphism L → F(K̂) given by N �→ N⊥ preserves the
norms, so it is an isomorphism in S. Hence

hS(sub⋆
o(φ)) = hS(sub(φ̂))

and consequently

htop(φ) = hS(sub(φ̂)) = ent(φ̂).

QED

The proof of Weiss Bridge Theorem can be reassumed by the following
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∅ to 0, a self-map λ : X → X to σλ : KY → KX when X �= ∅. Then the pair
(h, htop) satisfies (BTFK

) with constant log |K|.
Analogously, let GK : Setfin → Grp be the functor defined on flows sending

X to
⊕

X K and a finite-to-one self-map λ : X → X to σ⊕
λ :

⊕
X K → ⊕

X K.
Then the pair (h∗, halg) satisfies (BTGK

) with constant log |K|.
Remark 5. At the conference held in Porto Cesareo, R. Farnsteiner posed

the following question related to the Bridge Theorem. Is htop studied in non-
Hausdorff compact spaces?

The question was motivated by the fact that the prime spectrum Spec(A)
of a commutative ring A is usually a non-Hausdorff compact space. Related
to this question and to the entropy hλ defined for endomorphisms φ of local
Noetherian rings A (see §2.5), one may ask if there is any relation (e.g., a
weak Bridge Theorem) between these two entropies and the functor Spec; more
precisely, one can ask whether there is any stable relation between htop(Spec(φ))
and hλ(φ).

4 Algebraic entropy and its specific properties

In this section we give an overview of the basic properties of the algebraic
entropy and the adjoint algebraic entropy. Indeed, we have seen that they
satisfy the general scheme presented in the previous section, but on the other
hand they were defined for specific group endomorphisms and these definitions
permit to prove specific features, as we are going to briefly describe. For further
details and examples see [19], [24] and [20].

4.1 Definition and basic properties

Let G be a group and φ : G → G an endomorphism. For a finite subset F
of G, and for n ∈ N+, the n-th φ-trajectory of F is

Tn(φ, F ) = F · φ(F ) · . . . · φn−1(F );

moreover let

γφ,F (n) = |Tn(φ, F )|. (8)

The algebraic entropy of φ with respect to F is

Halg(φ, F ) = lim
n→∞

log γφ,F (n)

n
;

This limit exists as Halg(φ, F ) = hS(H(φ), F ) and so Theorem 1 applies (see
also [20] for a direct proof of the existence of this limit and [19] for the abelian
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diagram.

(K̂, φ̂)
sub��

hsub

��

((F(K̂),+); sub(φ̂))

̂
��

hS

�����������

�������������((sub⋆
o(K),∩); sub⋆

o(φ))

γ

��
R+

((covs(K),∨);φ)
� �

ι
��

(K, φ)

̂

��

cov
��

hcov

��

((cov(K),∨); cov(φ))

hS������������

��������������

Similar Bridge Theorems hold for other known entropies; they can be proved
using analogous diagrams (see [27]). The first one that we recall concerns the
algebraic entropy ent and the adjoint algebraic entropy ent⋆:

Theorem 7. Let φ : G → G be an endomorphism of an abelian group.
Then ent⋆(φ) = ent(φ̂).

The other two Bridge Theorems that we recall here connect respectively the
set-theoretic entropy h with the topological entropy htop and the contravariant
set-theoretic entropy h∗ with the algebraic entropy halg.

We need to recall first the notion of generalized shift, which extend the
Bernoulli shifts. For a map λ : X → Y between two non-empty sets and a fixed
non-trivial group K, define σλ : KY → KX by σλ(f) = f ◦ λ for f ∈ KY . For
Y = X, λ is a self-map of X and σλ was called generalized shift of KX (see
[3, 5]). In this case

⊕
X K is a σλ-invariant subgroup of KX precisely when λ

is finitely many-to-one. We denote σλ ↾⊕
X K by σ⊕

λ .
Item (a) in the next theorem was proved in [5] (see also [20, Theorem 7.3.4])

while item (b) is [20, Theorem 7.3.3] (in the abelian case it was obtained in [3]).

Theorem 8. [5] Let K be a non-trivial finite group, let X be a set and
λ : X → X a self-map.

(a) Then htop(σλ) = h(λ) log |K|.

(b) If λ is finite-to-one, then halg(σ
⊕
λ ) = h∗(λ) log |K|.

In terms of functors, fixed a non-trivial finite group K, let FK : Set →
TdCGrp be the functor defined on flows, sending a non-empty set X to KX ,
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Similar Bridge Theorems hold for other known entropies; they can be proved
using analogous diagrams (see [27]). The first one that we recall concerns the
algebraic entropy ent and the adjoint algebraic entropy ent⋆:

Theorem 7. Let φ : G → G be an endomorphism of an abelian group.
Then ent⋆(φ) = ent(φ̂).

The other two Bridge Theorems that we recall here connect respectively the
set-theoretic entropy h with the topological entropy htop and the contravariant
set-theoretic entropy h∗ with the algebraic entropy halg.

We need to recall first the notion of generalized shift, which extend the
Bernoulli shifts. For a map λ : X → Y between two non-empty sets and a fixed
non-trivial group K, define σλ : KY → KX by σλ(f) = f ◦ λ for f ∈ KY . For
Y = X, λ is a self-map of X and σλ was called generalized shift of KX (see
[3, 5]). In this case
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X K by σ⊕
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Item (a) in the next theorem was proved in [5] (see also [20, Theorem 7.3.4])

while item (b) is [20, Theorem 7.3.3] (in the abelian case it was obtained in [3]).

Theorem 8. [5] Let K be a non-trivial finite group, let X be a set and
λ : X → X a self-map.

(a) Then htop(σλ) = h(λ) log |K|.

(b) If λ is finite-to-one, then halg(σ
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case). The algebraic entropy of φ : G → G is

halg(φ) = sup{Halg(φ, F ) : F finite subset of G} = hS(H(φ)).

Moreover

ent(φ) = sup{Halg(φ, F ) : F finite subgroup of G}.
If G is abelian, then ent(φ) = ent(φ ↾t(G)) = halg(φ ↾t(G)).

Moreover, halg(φ) = ent(φ) if G is locally finite, that is every finite subset of
G generates a finite subgroup; note that every locally finite group is obviously
torsion, while the converse holds true under the hypothesis that the group is
abelian (but the solution of Burnside Problem shows that even groups of finite
exponent fail to be locally finite).

For every abelian group G, the identity map has halg(idG) = 0 (as the
normed semigroup H(G) is arithmetic, as seen above). Another basic example
is given by the endomorphisms of Z, indeed if φ : Z → Z is given by φ(x) = mx
for some positive integer m, then halg(φ) = log m. The fundamental example
for the algebraic entropy is the right Bernoulli shift:

Example 5. (Bernoulli normalization) Let K be a group.

(a) The right Bernoulli shift βK : K(N) → K(N) is defined by

(x0, . . . , xn, . . .) �→ (1, x0, . . . , xn, . . .).

Then halg(βK) = log |K|, with the usual convention that log |K| = ∞
when K is infinite.

(b) The left Bernoulli shift Kβ : K(N) → K(N) is defined by

(x0, . . . , xn, . . .) �→ (x1, . . . , xn+1, . . .).

Then halg(Kβ) = 0, as Kβ is locally nilpotent.

The following basic properties of the algebraic entropy are consequences of
the general scheme and were proved directly in [20].

Fact 1. Let G be a group and φ : G → G an endomorphism.

(a) [Invariance under conjugation] If φ = ξ−1ψξ, where ψ : H → H is an
endomorphism and ξ : G → H isomorphism, then halg(φ) = halg(ψ).

(b) [Monotonicity] If H is a φ-invariant normal subgroup of the group G, and
φ : G/H → G/H is the endomorphism induced by φ, then halg(φ) ≥
max{halg(φ ↾H), halg(φ)}.
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(c) [Logarithmic Law] For every k ∈ N we have halg(φ
k) = k · halg(φ); if φ is

an automorphism, then halg(φ) = halg(φ
−1), so halg(φ

k) = |k| ·halg(φ) for
every k ∈ Z.

(d) [Continuity] If G is direct limit of φ-invariant subgroups {Gi : i ∈ I}, then
halg(φ) = supi∈I halg(φ ↾Gi

).

(e) [Weak Addition Theorem] If G = G1 × G2 and φi : Gi → Gi is an
endomorphism for i = 1, 2, then halg(φ1 × φ2) = halg(φ1) + halg(φ2).

As described for the semigroup entropy in the previous section, and as noted
in [20, Remark 5.1.2], for group endomorphisms φ : G → G it is possible to define
also a “left” algebraic entropy, letting for a finite subset F of G, and for n ∈ N+,

T#
n (φ, F ) = φn−1(F ) · . . . · φ(F ) · F,

H#
alg(φ, F ) = lim

n→∞

log |T#
n (φ, F )|
n

and
h#

alg(φ) = sup{H#
alg(φ, F ) : F finite subset of G}.

Answering a question posed in [20, Remark 5.1.2], we see now that

halg(φ) = h#
alg(φ).

Indeed, every finite subset of G is contained in a finite subset F of G such that
1 ∈ F and F = F−1; for such F we have

Halg(φ, F ) = H#
alg(φ, F ),

since, for every n ∈ N+,

Tn(φ, F )−1 = φn−1(F )−1 · . . . · φ(F )−1 · F−1 =

φn−1(F−1) · . . . · φ(F−1) · F−1 = T#
n (φ, F )

and so |Tn(φ, F )| = |Tn(φ, F )−1| = |T#
n (φ, F )|.

4.2 Algebraic Yuzvinski Formula, Addition Theorem and Uni-

queness

We recall now some of the main deep properties of the algebraic entropy
in the abelian case. They are not consequences of the general scheme and are
proved using the specific features of the algebraic entropy coming from the
definition given above. We give here the references to the papers where these
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Moreover, uniqueness is available for the algebraic entropy in the category of
all abelian groups. As in the case of the Addition Theorem, also the Uniqueness
Theorem was proved in general in [19], while it was previously proved in [28]
for torsion abelian groups.

Theorem 11 (Uniqueness Theorem). [19] The algebraic entropy

halg : FlowAbGrp → R+

is the unique function such that:

(a) halg is invariant under conjugation;

(b) halg is continuous on direct limits;

(c) halg satisfies the Addition Theorem;

(d) for K a finite abelian group, halg(βK) = log |K|;

(e) halg satisfies the Algebraic Yuzvinski Formula.

4.3 The growth of a finitely generated flow in Grp

In order to measure and classify the growth rate of maps N → N, one need
the relation � defined as follows. For γ, γ′ : N → N let γ � γ′ if there exist
n0, C ∈ N+ such that γ(n) ≤ γ′(Cn) for every n ≥ n0. Moreover γ ∼ γ if γ � γ′

and γ′ � γ (then ∼ is an equivalence relation), and γ ≺ γ′ if γ � γ′ but γ �∼ γ′.
For example, for every α, β ∈ R≥0, nα ∼ nβ if and only if α = β; if p(t) ∈ Z[t]

and p(t) has degree d ∈ N, then p(n) ∼ nd. On the other hand, an ∼ bn for
every a, b ∈ R with a, b > 1, so in particular all exponentials are equivalent with
respect to ∼.

So a map γ : N → N is called:

(a) polynomial if γ(n) � nd for some d ∈ N+;

(b) exponential if γ(n) ∼ 2n;

(c) intermediate if γ(n) ≻ nd for every d ∈ N+ and γ(n) ≺ 2n.

Let G be a group, φ : G → G an endomorphism and F a non-empty finite
subset of G. Consider the function, already mentioned in (8),

γφ,F : N+ → N+ defined by γφ,F (n) = |Tn(φ, F )| for every n ∈ N+.

Since
|F | ≤ γφ,F (n) ≤ |F |n for every n ∈ N+,
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results were proved, for a general exposition on algebraic entropy see the survey
paper [20].

The next proposition shows that the study of the algebraic entropy for
torsion-free abelian groups can be reduced to the case of divisible ones. It
was announced for the first time by Yuzvinski [91], for a proof see [19].

Proposition 1. Let G be a torsion-free abelian group, φ : G → G an en-
domorphism and denote by φ̃ the (unique) extension of φ to the divisible hull
D(G) of G. Then halg(φ) = halg(φ̃).

Let f(t) = antn + a1t
n−1 + . . . + a0 ∈ Z[t] be a primitive polynomial and let

{λi : i = 1, . . . , n} ⊆ C be the set of all roots of f(t). The (logarithmic) Mahler
measure of f(t) is

m(f(t)) = log |an| +
∑

|λi|>1

log |λi|.

The Mahler measure plays an important role in number theory and arith-
metic geometry and is involved in the famous Lehmer Problem, asking whether
inf{m(f(t)) : f(t) ∈ Z[t] primitive, m(f(t)) > 0} > 0 (for example see [31] and
[50]).

If g(t) ∈ Q[t] is monic, then there exists a smallest positive integer s such
that sg(t) ∈ Z[t]; in particular, sg(t) is primitive. The Mahler measure of g(t) is
defined as m(g(t)) = m(sg(t)). Moreover, if φ : Qn → Qn is an endomorphism,
its characteristic polynomial pφ(t) ∈ Q[t] is monic, and the Mahler measure of
φ is m(φ) = m(pφ(t)).

The formula (9) below was given a direct proof recently in [37]; it is the
algebraic counterpart of the so-called Yuzvinski Formula for the topological
entropy [91] (see also [54]). It gives the values of the algebraic entropy of
linear transformations of finite dimensional rational vector spaces in terms of
the Mahler measure, so it allows for a connection of the algebraic entropy with
Lehmer Problem.

Theorem 9 (Algebraic Yuzvinski Formula). [37] Let n ∈ N+ and φ : Qn →
Qn an endomorphism. Then

halg(φ) = m(φ). (9)

The next property of additivity of the algebraic entropy was first proved for
torsion abelian groups in [28], while the proof of the general case was given in
[19] applying the Algebraic Yuzvinski Formula.

Theorem 10 (Addition Theorem). [19] Let G be an abelian group, φ : G →
G an endomorphism, H a φ-invariant subgroup of G and φ : G/H → G/H the
endomorphism induced by φ. Then

halg(φ) = halg(φ ↾H) + halg(φ).
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Milnor [58] proposed the following problem on the growth of finitely gener-
ated groups.

Problem 1 (Milnor Problem). [58] Let G be a finitely generated group and
X a finite set of generators of G.

(i) Is the growth function γX necessarily equivalent either to a power of n or
to the exponential function 2n?

(ii) In particular, is the growth exponent δG = lim supn→∞
log γX(n)

log n either a
well defined integer or infinity? For which groups is δG finite?

Part (i) of Problem 1 was solved negatively by Grigorchuk in [42, 43, 44, 45],
where he constructed his famous examples of finitely generated groups G with
intermediate growth. For part (ii) Milnor conjectured that δG is finite if and only
if G is virtually nilpotent (i.e., G contains a nilpotent finite-index subgroup).
The same conjecture was formulated by Wolf [89] (who proved that a nilpotent
finitely generated group has polynomial growth) and Bass [6]. Gromov [47]
confirmed Milnor’s conjecture:

Theorem 12 (Gromov Theorem). [47] A finitely generated group G has
polynomial growth if and only if G is virtually nilpotent.

The following two problems on the growth of finitely generated flows of
groups are inspired by Milnor Problem.

Problem 2. Describe the permanence properties of the class M.

Some stability properties of the class M are easy to check. For example,
stability under taking finite direct products is obviously available, while stability
under taking subflows (i.e., invariant subgroups) and factors fails even in the
classical case of identical flows. Indeed, Grigorchuk’s group G is a quotient of a
finitely generated free group F , that has exponential growth; so (F, idF ) ∈ M,
while (G, idG) �∈ M. Furthermore, letting G = G × F , one has (G, idG) ∈ M,
while (G, idG) �∈ M, so M is not stable even under taking direct summands.
On the other hand, stability under taking powers is available since (G, φ) ∈ M
if and only if (G, φn) ∈ M for n ∈ N+.

Problem 3.

(i) Describe the finitely generated groups G such that (G, φ) ∈ M for every
endomorphism φ : G → G.

(ii) Does there exist a finitely generated group G such that (G, idG) ∈ M but
(G, φ) �∈ M for some endomorphism φ : G → G?
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the growth of γφ,F is always at most exponential; moreover, Halg(φ, F ) ≤ log |F |.
So, following [22] and [20], we say that φ has polynomial (respectively, exponen-
tial, intermediate) growth at F if γφ,F is polynomial (respectively, exponential,
intermediate).

Before proceeding further, let us make an important point here. All prop-
erties considered above concern practically the φ-invariant subgroup Gφ,F of
G generated by the trajectory T (φ, F ) =

⋃
n∈N+

Tn(φ, F ) and the restriction
φ ↾Gφ,F

.

Definition 8. We say that the flow (G, φ) in Grp is finitely generated if
G = Gφ,F for some finite subset F of G.

Hence, all properties listed above concern finitely generated flows in Grp.
We conjecture the following, knowing that it holds true when G is abelian or
when φ = ifG: if the flow (G, φ) is finitely generated, and if G = Gφ,F and
G = Gφ,F ′ for some finite subsets F and F ′ of G, then γφ,F and γφ,F ′ have the
same type of growth.
In this case the growth of a finitely generated flow Gφ,F would not depend on
the specific finite set of generators F (so F can always be taken symmetric).
In particular, one could speak of growth of a finitely generated flow without
any reference to a specific finite set of generators. Nevertheless, one can give in
general the following.

Definition 9. Let (G, φ) be a finitely generated flow in Grp. We say that
(G, φ) has

(a) polynomial growth if γφ,F is polynomial for every finite subset F of G;

(b) exponential growth if there exists a finite subset F of G such that γφ,F is
exponential;

(c) intermediate growth otherwise.

We denote by Pol and Exp the classes of finitely generated flows in Grp of
polynomial and exponential growth respectively. Moreover, M = Pol ∪ Exp is
the class of finitely generated flows of non-intermediate growth.

This notion of growth generalizes the classical one of growth of a finitely
generated group given independently by Schwarzc [72] and Milnor [56]. Indeed,
if G is a finitely generated group and X is a finite symmetric set of generators of
G, then γX = γidG,X is the classical growth function of G with respect to X. For
a connection of the terminology coming from the theory of algebraic entropy
and the classical one, note that for n ∈ N+ we have Tn(idG, X) = {g ∈ G :
ℓX(g) ≤ n}, where ℓX(g) is the length of the shortest word w in the alphabet
X such that w = g (see §2.5 (c)). Since ℓX is a norm on G, Tn(idG, X) is the
ball of radius n centered at 1 and γX(n) is the cardinality of this ball.
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(iii) For a given G determine the properties of the largest class ΦG such that
(G, ΦG) satisfies MP.

(iv) Study the Galois correspondence between classes of groups G and classes
of endomorphisms Φ determined by MP.

According to the definitions, the class GId coincides with the class of finitely
generated groups of non-intermediate growth.

The following result solves Problem 4 (iii) for G = AbGrp, showing that
ΦAbGrp coincides with the class E of all endomorphisms.

Theorem 13 (Dichotomy Theorem). [22] There exist no finitely generated
flows of intermediate growth in AbGrp.

Actually, one can extend the validity of this theorem to nilpotent groups.
This leaves open the following particular case of Problem 4. We shall see in
Theorem 14 that the answer to (i) is positive when φ = idG.

Question 1. Let (G, φ) be a finitely generated flow in Grp.

(i) If G is solvable, does (G, φ) ∈ M?

(ii) If G is a free group, does (G, φ) ∈ M?

We state now explicitly a particular case of Problem 4, inspired by the fact
that the right Bernoulli shifts have no non-trivial quasi-periodic points and they
have uniform exponential growth (see Example 7). In [22] group endomorphisms
φ : G → G without non-trivial quasi-periodic points are called algebraically
ergodic for their connection (in the abelian case and through Pontryagin duality)
with ergodic transformations of compact groups.

Question 2. Let Φ0 be the class of endomorphisms without non-trivial
quasi-periodic points. Is it true that the pair (Grp, Φ0) satisfies MP?

For a finitely generated group G, the uniform exponential growth rate of G
is defined as

λ(G) = inf{Halg(idG, X) : X finite set of generators of G}

(see for instance [15]). Moreover, G has uniform exponential growth if λ(G) > 0.
Gromov [48] asked whether every finitely generated group of exponential growth
is also of uniform exponential growth. This problem was recently solved by
Wilson [88] in the negative.

Since the algebraic entropy of a finitely generated flow (G, φ) in Grp can be
computed as

halg(φ) = sup{Halg(φ, F ) : F finite subset of G such that G = Gφ,F },
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In item (i) of the above problem we are asking to describe all finitely gen-
erated groups G of non-intermediate growth such that (G, φ) has still non-
intermediate growth for every endomorphism φ : G → G. On the other hand, in
item (ii) we ask to find a finitely generated group G of non-intermediate growth
that admits an endomorphism φ : G → G of intermediate growth.

The basic relation between the growth and the algebraic entropy is given by
below Proposition 2. For a finitely generated group G, an endomorphism φ of
G and a pair X and X ′ of finite generators of G, one has γφ,X ∼ γφ,X′ . Never-
theless, Halg(φ, X) �= Halg(φ, X ′) may occur; in this case (G, φ) has necessarily
exponential growth. We give two examples to this effect:

Example 6. (a) [20] Let G be the free group with two generators a
and b; then X = {a±1, b±1} gives Halg(idG, X) = log 3 while for X ′ =
{a±1, b±1, (ab)±1} we have Halg(idG, X ′) = log 4.

(b) Let G = Z and φ : Z → Z defined by φ(x) = mx for every x ∈ Z and
with m > 3. Let also X = {0,±1} and X ′ = {0,±1, . . . ± m}. Then
Halg(φ, X) ≤ log |X| = log 3, while Halg(φ, X ′) = halg(φ) = log m.

Proposition 2. [20] Let (G, φ) be a finitely generated flow in Grp.

(a) Then halg(φ) > 0 if and only if (G, φ) has exponential growth.

(b) If (G, φ) has polynomial growth, then halg(φ) = 0.

In general the converse implication in item (b) is not true even for the
identity. Indeed, if (G, φ) has intermediate growth, then halg(φ) = 0 by item
(a). So for Grigorchuk’s group G, the flow (G, idG) has intermediate growth yet
halg(idG) = 0. This motivates the following

Definition 10. Let G be a class of groups and Φ be a class of morphisms.
We say that the pair (G, Φ) satisfies Milnor Paradigm (briefly, MP) if no finitely
generated flow (G, φ) with G ∈ G and φ ∈ Φ can have intermediate growth.

In terms of the class M,

(G, Φ) satisfies MP if and only if (G, Φ) ∈ M (∀G ∈ G)(∀φ ∈ Φ).

Equivalently, (G, Φ) satisfies MP when halg(φ) = 0 always implies that (G, φ)
has polynomial growth for finitely generated flows (G, φ) with G ∈ G and φ ∈ Φ.

In these terms Milnor Problem 1 (i) is asking whether the pair (Grp, Id)
satisfies MP, where Id is the class of all identical endomorphisms. So we give
the following general open problem.

Problem 4. (i) Find pairs (G, Φ) satisfying MP.

(ii) For a given Φ determine the properties of the largest class GΦ such that
(GΦ, Φ) satisfies MP.
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Problem 6. (i) Find pairs (G, Φ) satisfying GP.

(ii) For a given Φ determine the properties of the largest class GΦ such that
(GΦ, Φ) satisfies GP.

(iii) For a given G determine the properties of the largest class ΦG such that
(G, ΦG) satisfies GP.

(iv) Study the Galois correspondence between classes of groups G and classes
of endomorphisms Φ determined by GP.

We see now in item (a) of the next example a particular class of finitely
generated flows for which λ coincides with halg and they are both positive, so
in particular these flows are all in Expu. In item (b) we leave an open question
related to Question 2.

Example 7. (a) For a finite group K, consider the flow (
⊕

N K, βK).
We have seen in Example 5 that halg(βK) = log |K|. In this case we
have λ(

⊕
N K, βK) = log |K|, since a subset F of

⊕
N K generating the

flow (
⊕

N K, βK) must contain the first copy K0 of K in
⊕

N K, and
Halg(βK , K0) = log |K|.

(b) Is it true that λ(G, φ) = halg(φ) > 0 for every finitely generated flow (G, φ)
in Grp such that φ ∈ Φ0? In other terms, we are asking whether all finitely
generated flows (G, φ) in Grp with φ ∈ Φ0 have uniform exponential
growth (i.e., are contained in Expu).

One can also consider the pairs (G, Φ) satisfying the conjunction MP & GP.
For any finitely generated flow (G, φ) in Grp one has

(G, φ) has polynomial growth
(1)
=⇒ halg(φ) = 0

(2)
=⇒ λ(G, φ) = 0. (11)

The converse implication of (1) (respectively, (2)) holds for all (G, φ) with G ∈
G and φ ∈ Φ precisely when the pair (G, Φ) satisfies MP (respectively, GP).
Therefore, the pair (G, Φ) satisfies the conjunction MP & GP precisely when
the three conditions in (11) are all equivalent (i.e., λ(G, φ) = 0 ⇒ (G, φ) ∈ Pol)
for all finitely generated flows (G, φ) with G ∈ G and φ ∈ Φ.

A large class of groups G such that (G, Id) satisfies MP & GP was found by
Osin [62] who proved that a finitely generated solvable group G of zero uniform
exponential growth is virtually nilpotent, and recently this result was general-
ized in [63] to elementary amenable groups. Together with Gromov Theorem
and Proposition 2, this gives immediately the following

Theorem 14. Let G be a finitely generated elementary amenable group.
The following conditions are equivalent:
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one can give the following counterpart of the uniform exponential growth rate
for flows:

Definition 11. For (G, φ) be a finitely generated flow in Grp let

λ(G, φ) = inf{Halg(φ, F ) : F finite subset of G such that G = Gφ,F }.

The flow (G, φ) is said to have uniformly exponential growth if λ(G, φ) > 0.
Let Expu be the subclass of Exp of all finitely generated flows in Grp of

uniform exponential growth.

Clearly λ(G, φ) ≤ halg(φ), so one has the obvious implication

halg(φ) = 0 ⇒ λ(G, φ) = 0. (10)

To formulate the counterpart of Gromov’s problem on uniformly exponential
growth it is worth to isolate also the class W of the finitely generated flows in
Grp of exponential but not uniformly exponential growth (i.e., W = Exp \
Expu). Then W is the class of finitely generated flows (G, φ) in Grp for which
(10) cannot be inverted, namely halg(φ) > 0 = λ(G, φ).

We start stating the following problem.

Problem 5. Describe the permanence properties of the classes Expu and
W.

It is easy to check that Expu and W are stable under taking direct prod-
ucts. On the other hand, stability of Expu under taking subflows (i.e., invariant
subgroups) and factors fails even in the classical case of identical flows. Indeed,
Wilson’s group W is a quotient of a finitely generated free group F , that has
uniform exponential growth (see [15]); so (F, idF ) ∈ Expu, while (W, idW) ∈ W.
Furthermore, letting G = W×F , one has (G, idG) ∈ Expu, while (W, idW) ∈ W,
so Expu is not stable even under taking direct summands.

In the line of MP, introduced in Definition 10, we can formulate also the
following

Definition 12. Let G be a class of groups and Φ be a class of morphisms.
We say that the pair (G, Φ) satisfies Gromovr Paradigm (briefly, MP), if every
finitely generated flow (G, φ) with G ∈ G and φ ∈ Φ of exponential growth has
has uniform exponential growth.

In terms of the class W,

(G, Φ) satisfies GP if and only if (G, Φ) �∈ M (∀G ∈ G)(∀φ ∈ Φ).

In these terms, Gromov’s problem on uniformly exponential growth asks whether
the pair (Grp, Id) satisfies GP. In analogy to the general Problem 4, one can
consider the following obvious counterpart for GP:
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Example 8 (Bernoulli shifts). For K a non-trivial group,

ent⋆(βK) = ent⋆(Kβ) = ∞.

As proved in [24], the adjoint algebraic entropy satisfies the Weak Addition
Theorem, while the Monotonicity for invariant subgroups fails even for torsion
abelian groups; in particular, the Addition Theorem fails in general. On the
other hand, the Addition Theorem holds for bounded abelian groups:

Theorem 15 (Addition Theorem). Let G be a bounded abelian group, φ :
G → G an endomorphism, H a φ-invariant subgroup of G and φ : G/H → G/H
the endomorphism induced by φ. Then

ent⋆(φ) = ent⋆(φ ↾H) + ent⋆(φ).

The following is one of the main results on the adjoint algebraic entropy
proved in [24]. It shows that the adjoint algebraic entropy takes values only in
{0,∞}, while clearly the algebraic entropy may take also finite positive values.

Theorem 16 (Dichotomy Theorem). [24] Let G be an abelian group and
φ : G → G an endomorphism. Then

either ent⋆(φ) = 0 or ent⋆(φ) = ∞.

Applying the Dichotomy Theorem and the Bridge Theorem (stated in the
previous section) to the compact dual group K of G one gets that for a con-
tinuous endomorphism ψ of a compact abelian group K either ent(ψ) = 0 or
ent(ψ) = ∞. In other words:

Corollary 3. If K is a compact abelian group, then every endomorphism
ψ : K → K with 0 < ent(ψ) < ∞ is discontinuous.
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his kind permission to anticipate here some of the main results from [27]. Thanks
are due also to J. Spevák for letting us insert his example in item (b) of Example
3, and to L. Busetti for the nice diagrams from his thesis [13] used in the present
paper.
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(a) halg(idG) = 0;

(b) λ(G) = 0;

(c) G is virtually nilpotent;

(d) G has polynomial growth.

This theorem shows that the pair G = {elementary amenable groups} and
Φ = Id satisfies simultaneously MP and GP. In other words it proves that the
three conditions in (11) are all equivalent when G is an elementary amenable
finitely generated group and φ = idG.

4.4 Adjoint algebraic entropy

We recall here the definition of the adjoint algebraic entropy ent⋆ and we
state some of its specific features not deducible from the general scheme, so
beyond the “package” of general properties coming from the equality ent⋆ =
hsub⋆ such as Invariance under conjugation and inversion, Logarithmic Law,
Monotonicity for factors (these properties were proved in [20] in the general
case and previously in [24] in the abelian case applying the definition).

In analogy to the algebraic entropy ent, in [24] the adjoint algebraic entropy
of endomorphisms of abelian groups G was introduced “replacing” the family
F(G) of all finite subgroups of G with the family C(G) of all finite-index sub-
groups of G. The same definition was extended in [20] to the more general
setting of endomorphisms of arbitrary groups as follows. Let G be a group
and N ∈ C(G). For an endomorphism φ : G → G and n ∈ N+, the n-th
φ-cotrajectory of N is

Cn(φ, N) = N ∩ φ−1(N) ∩ . . . ∩ φ−n+1(N).

The adjoint algebraic entropy of φ with respect to N is

H⋆(φ, N) = lim
n→∞

log[G : Cn(φ, N)]

n
.

This limit exists as H⋆(φ, N) = hS(C(φ), N) and so Theorem 1 applies. The
adjoint algebraic entropy of φ is

ent⋆(φ) = sup{H⋆(φ, N) : N ∈ C(G)}.

The values of the adjoint algebraic entropy of the Bernoulli shifts were cal-
culated in [24, Proposition 6.1] applying [34, Corollary 6.5] and the Pontryagin
duality; a direct computation can be found in [35]. So, in contrast with what
occurs for the algebraic entropy, we have:
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matics 38 (1) (1937) 65–113.

[10] R. Bowen: Entropy and the fundamental group, The structure of attractors in dynamical
systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), pp. 21–29, Lecture
Notes in Math. 668, Springer, Berlin, 1978.

[11] R. Bowen: Entropy for group endomorphisms and homogeneous spaces, Trans. Amer.
Math. Soc. 153 (1971) 401–414.

[12] R. Bowen: Erratum to “Entropy for group endomorphisms and homogeneous spaces”,
Trans. Amer. Math. Soc. 181 (1973) 509–510.

[13] L. Busetti: Entropia per semigruppi normati, MSc Thesis, University of Udine, 2011.

[14] A. L. S. Corner: On endomorphism rings of primary Abelian groups, Quart. J. Math.
Oxford (2) 20 (1969) 277–296.

[15] P. de la Harpe: Uniform growth in groups of exponential growth, Geom. Dedicata 95
(2002) 1–17.

[16] D. Dikranjan: A uniform approach to chaos, Algebra meets Topology: Advances
and Applications, July 19-23, 2010, UPC - Barcelona Tech., Barcelona (Abstracts),
http://atlas-conferences.com/cgi-bin/abstract/cbah-54.

[17] D. Dikranjan, A. Giordano Bruno: Entropy for automorphisms of totally discon-
nected locally compact groups, preprint.

[18] D. Dikranjan, A. Giordano Bruno: Limit free computation of entropy, to appear in
Rend. Istit. Mat. Univ. Trieste.

[19] D. Dikranjan, A. Giordano Bruno: Entropy on abelian groups, preprint,
arXiv:1007.0533.

[20] D. Dikranjan, A. Giordano Bruno: Topological entropy and algebraic entropy for
group endomorphisms, Proceedings ICTA2011 Islamabad Pakistan July 4–10 2011, pp.
133–214, Cambridge Scientific Publishers (2012).

[21] D. Dikranjan, A. Giordano Bruno: The connection between topological and algebraic
entropy, Topol. Appl. 159 (13) (2012) 2980–2989.

44



46

[66] V. Rohlin: Metric properties of endomorphisms of compact commutative groups, Izv.
Akad. Nauk. S.S.S.R., Ser. Mat. 28 (1964) 867–874 (In Russian).

[67] L. Salce: Some results on the algebraic entropy, in “Groups and Model Theory” Con-
temp. Math. 576 (2012).

[68] L. Salce, P. Vámos, S. Virili: Length functions, multiplicities and algebraic entropy,
Forum Math. doi: 10.1515/form.2011.117.

[69] L. Salce, P. Zanardo: Commutativity modulo small endomorphisms and endomor-
phisms of zero algebraic entropy, in Models, Modules and Abelian Groups, de Gruyter
(2008) 487–497.

[70] L. Salce, P. Zanardo: A general notion of algebraic entropy and the rank entropy,
Forum Math. 21 (4) (2009) 579–599.

[71] L. Salce, P. Zanardo: Abelian groups of zero adjoint entropy, Colloq. Math. 121 (1)
(2010) 45–62.

[72] A. S. Schwarzc: A volume invariant of coverings, Dokl. Ak. Nauk USSR 105 (1955)
32–34.

[73] J. Silverman: Dynamical Degrees, Arithmetic Degrees, and Canonical Heights for Dom-
inant Rational Self-Maps of Projective Space, arXiv:1111.5664.

[74] Y. G. Sinai: On the concept of entropy of a dynamical system, Doklady Akad. Nauk.
SSSR 124 (1959) 786–781 (in Russian).

[75] L. N. Stojanov: Uniqueness of topological entropy for endomorphisms on compact
groups, Boll. Un. Mat. Ital. B (7) 1 (3) (1987) 829–847.

[76] J. Tits: Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.
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Definition 2. Let Q be a quiver (a directed graph). The path algebra kQ
of Q has an underlying vector space, whose basis consists of all paths. We
multiply paths by concatenation if possible and postulate that their product be
zero otherwise.

The above definition is meant to include paths ei of length 0, labelled by
the vertices of Q. They form a system of primitive orthogonal idempotents of
kQ. If the quiver is finite, then

∑
i ei is the identity element of kQ. We shall

only be concerned with finite quivers (i.e., Q has finitely many vertices and
arrows). In that case, kQ is finite-dimensional if and only if Q does not afford
any oriented cycles. The following basic result concerning Morita equivalence
∼M of k-algebras indicates an interesting connection between representations
of quivers and Lie theory:

Theorem 1. Let Λ be an associative k-algebra.

(1) There exists a finite quiver QΛ and a certain ideal I � kQΛ such that
Λ ∼M kQΛ/I [14].

(2) If Λ is hereditary (i.e., submodules of projectives are projective) and QΛ

is connected, then Λ ∼M kQΛ and

(a) Λ is representation-finite if and only if QΛ is a Dynkin diagram of
type A, D, E [14].

(b) Λ is tame if and only if QΛ is an extended Dynkin diagram of type
Ã, D̃, Ẽ [2, 24].

In either case, the indecomposable modules can be classified via the asso-
ciated root system.

The quiver QΛ is the so-called Ext-quiver of Λ. Its vertices are formed
by a complete set of representatives for the simple Λ-modules. There are
dimk Ext1Λ(S, T ) arrows from S to T . There is no general rule for the com-
putation of the relations generating the non-unique ideal I.

While the above results are very satisfactory from the point of view of ab-
stract representation theory, they do rely on the knowledge of the quiver and
the relations of the given algebra. However, even if an algebra is basic to begin
with (that is, if all simple modules are one-dimensional), the given presentation
may not be suitable for our purposes. Let me illustrate this point by considering
an easy example.

Example 2. Let char(k) = p > 0, and consider the algebra given by

Λ = k�t, x�/(tx − xt − x, tp − t, xp).

51

• Unless mentioned otherwise all k-vector spaces are assumed to be finite-
dimensional.

• Λ denotes an associative k-algebra.

Given d ∈ N, we let modd
Λ be the affine variety of d-dimensional Λ-modules.

More precisely, modd
Λ is the variety of Λ-module structures on a fixed d-dimensional

k-vector space V . If {x1, . . . , xn } ⊆ Λ is a basis of Λ such that x1 = 1 and
xixj =

∑n
ℓ=1 αijℓxℓ, then a representation of Λ on V is given by an n-tuple

(A1, . . . , An) of (d×d)-matrices such that A1 = Id and AiAj =
∑n

ℓ=1 αijℓAℓ. In

this fashion, modd
Λ is a Zariski closed subspace of knd2

.

The algebraic group GLd(k) acts on modd
Λ via conjugation. Thus, the orbits

correspond to the isoclasses of Λ-modules. Note that the set indd
Λ of indecom-

posable modules of modd
Λ is GLd(k)-invariant. (The set indd

Λ is a constructible
subset of modd

Λ.)

Definition 1. Given d ∈ N, we let Cd ⊆ modd
Λ be a closed subset of minimal

dimension subject to indd
Λ ⊆ GLd(k).Cd. The algebra Λ is

(a) representation-finite, provided dim Cd = 0 for every d ∈ N,

(b) tame, provided Λ is not representation-finite and dimCd ≤ 1 for all d ∈ N,

(c) wild, otherwise.

Remark 1. (1) An algebra is representation-finite if and only if there are
only finitely many isoclasses of indecomposable Λ-modules. This follows from
the so-called second Brauer-Thrall conjecture for Artin algebras, which is known
to hold in our context.

(2) If an algebra is wild, then its module category is at least as compli-
cated as that of any other algebra. For such algebras the classification of its
indecomposable modules is deemed hopeless [3].

Example 1. (1) Every semi-simple algebra is representation-finite.

(2) The algebra k[X]/(Xn) is representation-finite.

(3) More generally, Nakayama algebras are representation-finite. By defi-
nition, the projective indecomposable and injective indecomposable modules of
such algebras are uniserial.

(4) The Kronecker algebra k[X, Y ]/(X2, Y 2) is tame.

One may ask what this subdivision looks like for certain classes of algebras.
As the representation type of an algebra is an invariant of its Morita equivalence
class, the criteria one is looking for are often given in terms of the associated
basic algebras. Such algebras can be described by finite directed graphs.
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the relations of the given algebra. However, even if an algebra is basic to begin
with (that is, if all simple modules are one-dimensional), the given presentation
may not be suitable for our purposes. Let me illustrate this point by considering
an easy example.

Example 2. Let char(k) = p > 0, and consider the algebra given by

Λ = k�t, x�/(tx − xt − x, tp − t, xp).
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• Unless mentioned otherwise all k-vector spaces are assumed to be finite-
dimensional.

• Λ denotes an associative k-algebra.

Given d ∈ N, we let modd
Λ be the affine variety of d-dimensional Λ-modules.

More precisely, modd
Λ is the variety of Λ-module structures on a fixed d-dimensional

k-vector space V . If {x1, . . . , xn } ⊆ Λ is a basis of Λ such that x1 = 1 and
xixj =

∑n
ℓ=1 αijℓxℓ, then a representation of Λ on V is given by an n-tuple

(A1, . . . , An) of (d×d)-matrices such that A1 = Id and AiAj =
∑n

ℓ=1 αijℓAℓ. In

this fashion, modd
Λ is a Zariski closed subspace of knd2

.

The algebraic group GLd(k) acts on modd
Λ via conjugation. Thus, the orbits

correspond to the isoclasses of Λ-modules. Note that the set indd
Λ of indecom-

posable modules of modd
Λ is GLd(k)-invariant. (The set indd

Λ is a constructible
subset of modd

Λ.)

Definition 1. Given d ∈ N, we let Cd ⊆ modd
Λ be a closed subset of minimal

dimension subject to indd
Λ ⊆ GLd(k).Cd. The algebra Λ is

(a) representation-finite, provided dim Cd = 0 for every d ∈ N,

(b) tame, provided Λ is not representation-finite and dimCd ≤ 1 for all d ∈ N,

(c) wild, otherwise.

Remark 1. (1) An algebra is representation-finite if and only if there are
only finitely many isoclasses of indecomposable Λ-modules. This follows from
the so-called second Brauer-Thrall conjecture for Artin algebras, which is known
to hold in our context.

(2) If an algebra is wild, then its module category is at least as compli-
cated as that of any other algebra. For such algebras the classification of its
indecomposable modules is deemed hopeless [3].

Example 1. (1) Every semi-simple algebra is representation-finite.

(2) The algebra k[X]/(Xn) is representation-finite.

(3) More generally, Nakayama algebras are representation-finite. By defi-
nition, the projective indecomposable and injective indecomposable modules of
such algebras are uniserial.

(4) The Kronecker algebra k[X, Y ]/(X2, Y 2) is tame.

One may ask what this subdivision looks like for certain classes of algebras.
As the representation type of an algebra is an invariant of its Morita equivalence
class, the criteria one is looking for are often given in terms of the associated
basic algebras. Such algebras can be described by finite directed graphs.
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G corresponds to a Hopf algebra structure of the coordinate ring k[G], which
renders k[G] a commutative Hopf algebra.

We say that G is an algebraic group if the representing object k[G] is finitely
generated. If k[G] is finite-dimensional, then G is referred to as a finite algebraic
group. In this case,

kG := k[G]∗

is a finite-dimensional, cocommutative Hopf algebra, the so-called algebra of
measures on G. In fact, the correspondence

G �→ kG

provides an equivalence between the categories of finite algebraic groups and
finite-dimensional cocommutative Hopf algebras. In this equivalence, group
algebras of finite groups correspond to reduced finite algebraic groups. An alge-
braic group G is called reduced or smooth, provided its coordinate ring k[G] does
not possess any non-trivial nilpotent elements. If char(k) = 0, then Cartier’s
Theorem asserts that any algebraic group is reduced, thus all cocommutative
Hopf algebras are semisimple in this case. We shall therefore henceforth assume
that char(k) = p > 0.

Definition 3. A finite group scheme G is called infinitesimal, provided
G(k) = { 1 }.

Let G be a finite algebraic group. General theory shows that

kG = Λ∗G

is a skew group algebra, where G = G(k) is the finite group of k-rational points
of G and Λ = kG0 is the Hopf algebra of a certain infinitesimal normal subgroup
G0 of G.

Example 3. Let r ∈ N.

(1) For n ∈ N, let GL(n)r : Mk −→ Gr be given by

GL(n)r(R) := { (ζij) ∈ GL(n)(R) | ζpr

ij = δij }.

By general theory, every infinitesimal group G is a subgroup of a suitable
GL(n)r.

(2) Consider Gm(r) := GL(1)r, that is,

Gm(r)(R) := {x ∈ R× | xpr

= 1 } ⊆ R×.

Then we have
kGm(r)

∼= kpr

.
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This is the natural presentation of the restricted enveloping algebra of the two-
dimensional, non-abelian Lie algebra. The bound quiver presentation we are
looking for is

Λ ∼= kÃp−1/(kÃp−1)≥p,

where the quiver Ãp−1 is the clockwise oriented circle with p vertices and
(kÃp−1)≥p is the subspace with basis the set of all paths of length ≥ p.

The more complicated quiver presentation contains more information. One
readily sees that Λ is a Nakayama algebra, which is not apparent in the natural
presentation.

In these notes we will show how a combination of geometric and repre-
sentation theoretic methods affords the transition to such a more complicated
presentation for certain Hopf algebras of positive characteristic. The classical
examples of Hopf algebras are of course the group algebras of finite groups. Here
we have the following situation:

Theorem 2. Suppose that char(k) = p > 0. Let kG be the group algebra of
a finite group G, P ⊆ G be a Sylow-p-subgroup.

(1) kG is representation-finite ⇔ P is cyclic [16].

(2) kG is tame ⇔ p = 2, and P is dihedral, semidihedral, or generalized
quaternion [1].

Like any algebra, the group algebra kG is the direct sum of indecomposable
two-sided ideals of kG, the so-called blocks of kG. Each block is an algebra in its
own right and the module category of kG is the direct sum of the module cat-
egories of the blocks. (The block decomposition corresponds to the connected
components of the Ext-quiver.) The basic algebras of the representation-finite
and tame blocks of kG are completely understood. The representation-finite
blocks were determined in the late sixties. Almost 20 years later, Karin Erd-
mann classified blocks of tame representation type via the stable Auslander-
Reiten quiver [5].

1.2 Finite algebraic groups and their Hopf algebras

We let Mk and Gr be the categories of not necessarily finite-dimensional
commutative k-algebras and groups, respectively. A representable functor

G : Mk −→ Gr ; R �→ G(R)

is called an affine group scheme. By definition, there exists a commutative
k-algebra k[G] such that G(R) is the set of algebra homomorphisms k[G] −→
R for every R ∈ Mk. By Yoneda’s Lemma, the group functor structure of
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Theorem 3 (Nagata). Let G be a finite algebraic group. Then kG is semi-
simple if and only if p ∤ ord(G(k)) and G0 ∼=

∏n
i=1 Gm(ri) for some n ∈ N0 and

ri ∈ N.

2 Support varieties and rank varieties of restricted

Lie algebras

2.1 Cohomological support varieties

Let G be a finite group scheme over an algebraically closed field k of char-
acteristic p > 0. We shall study the category modG of finite-dimensional kG-
modules, whose objects will be referred to as G-modules. Our tools will be
geometric in nature; we begin by outlining the main features.

Let M be a G-module. We denote by

Ext∗G(M, M) :=
⊕

n≥0

Extn
G(M, M)

the Yoneda algebra of self-extensions of M . If M = k is the trivial G-module,
then

H•(G, k) :=
⊕

n≥0

Ext2n
G (k, k)

is the even cohomology ring of G. This is a commutative k-algebra.
A classical result due to Evens [6] and Venkov [28] asserts that H•(G, k) is

finitely generated whenever G is a finite group. The most general result of this
type is the following:

Theorem 4 ([13]). Let M be a G-module.

(1) The commutative k-algebra H•(G, k) is finitely generated.

(2) The homomorphism

ΦM : H•(G, k) −→ Ext∗G(M, M) ; [f ] �→ [f⊗idM ]

is finite.

This fundamental result enables us to introduce geometric techniques by
associating varieties to modules. We denote by Maxspec(H•(G, k)) := {M �

H•(G, k) | M maximal ideal } the maximal ideal spectrum of H•(G, k). For an
arbitrary ideal I �H•(G, k), we let Z(I) := {M ∈ Maxspec(H•(G, k)) | I ⊆ M }
be the zero locus of I. These sets form the closed sets of the Zariski topology
of the affine variety Maxspec(H•(G, k)).
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(3) Let Ga(r) : Mk −→ Gr be given by

Ga(r)(R) := {x ∈ R | xpr

= 0 } ⊆ (R, +).

Then we have

kGa(r)
∼= k[X1, . . . , Xr]/(Xp

1 , . . . , Xp
r ).

As an algebra, kGa(r) is the group algebra of an elementary abelian p-
group of rank r. In particular, we have

kGa(r) is representation-finite ⇔ r = 1 ;

kGa(r) is tame ⇔ p = 2 and r = 2.

(4) For m = npr with (n, p) = 1 we consider

Q(m)(R) := {
(

a b
c d

)
∈ SL(2)(R) | am = 1 = dm , bp = 0 = cp }.

Then we have Q(m)(k) = {
(

a 0
0 a−1

)
| an = 1 }. Thus, Q(m) is a finite

algebraic group, which is infinitesimal if and only if n = 1. The infinites-
imal group Q(pr) = SL(2)1Tr is the product of the first Frobenius kernel
of SL(2) with the r-th Frobenius kernel of its standard maximal torus T .

Let G ⊆ GL(n) be an algebraic group, r ∈ N. Then

Gr := G ∩ GL(n)r

is the r-th Frobenius kernel of G. Thus, Gr is an infinitesimal group. One
can show that the definition does not depend on the choice of the inclusion
G ⊆ GL(n).

If G is infinitesimal, then there exists r ∈ N with G = Gr and

ht(G) := min{ r | Gr = G }
is called the height of G. The Hopf algebra kG possesses a co-unit ε : kG −→ k.
The unique block B0(G) ⊆ kG with ε(B0(G)) �= (0) is called the principal block of
kG. Problem. Let G be a finite algebraic group. When is B0(G) representation-
finite or tame?

Roughly speaking, we shall pursue the following strategy. Using geometric
tools we reduce the problem to the consideration of small examples that are
amenable to the methods from abstract representation theory. The latter will
enable us to see which of the examples have the desired representation type and
what their quivers and relations are.

We conclude this section by stating the analogue of Maschke’s Theorem in
the context finite algebraic groups. Since the tensor product of a module with
a projective module is projective, a Hopf algebra kG is semi-simple if and only
if its principal block is simple.
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(b) xp ∈ Lie(G) for every x ∈ Lie(G).

A subspace g ⊆ Λ of an associative k-algebra Λ satisfying (a) and (b) is called
a restricted Lie algebra. These algebras may also be defined axiomatically: A
restricted Lie algebra is a pair (g, [p]) consisting of an abstract Lie algebra g

and an operator g −→ g ; x �→ x[p] that satisfies the formal properties of an
associative p-th power.

Given such a restricted Lie algebra (g, [p]) with universal enveloping algebra
U(g), one defines the restricted enveloping algebra via

U0(g) := U(g)/({xp − x[p] | x ∈ g }).

The algebra U0(g) inherits the Hopf algebra structure from U(g) and we have

g = {x ∈ U0(g) | ∆(x) = x ⊗ 1 + 1 ⊗ x }.

The connection with infinitesimal groups of height 1 is given by:

Proposition 1. Let G be an infinitesimal group of height 1. Then there
exists an isomorphism

kG ∼= U0(Lie(G))

of Hopf algebras.

Many of our results to follow will depend on the following basic examples
pertaining to solvable and simple restricted Lie algebras.

Example 5. (1) Let V be a k-vector space, t : V −→ V be a non-zero
linear transformation satisfying tp = t. Then g(t, V ) := kt ⊕ V obtains the
structure of a restricted Lie algebra via

[(αt, v), (βt, w)] := (0, αt(w) − βt(v)) ; (αt, v)[p] = (αpt, αp−1tp−1(v)).

For the corresponding restricted enveloping algebra one can compute the Ext-
quiver and the relations. Abstract representation theory then shows:

• U0(g(t, V )) is representation-finite ⇔ dimk V ≤ 1.

• U0(g(t, V )) is tame ⇔ dimk V = 2 and p = 2.

(2) Let g := sl(2) be the restricted Lie algebra of trace zero (2×2)-matrices.
The restricted enveloping algebra U0(sl(2)) possesses exactly p simple modules
L(0), . . . , L(p−1) with dimk L(i) = i+1. In the early 1980’s Fischer [11], Drozd
[4] and Rudakov [27] independently computed the quiver and the relations of
U0(sl(2)). For p ≥ 3, the algebra U0(sl(2)) has blocks B0, . . . ,B p−3

2

, each Bi

possessing two simple modules L(i) and L(p−2− i). There is one additional
simple block Bp−1 belonging to the Steinberg module L(p−1). The non-simple
blocks have bound quiver presentation given by the quiver ∆1:
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Definition 4. Let M be a G-module. The affine variety

VG(M) := Z(ker ΦM ) ⊆ Maxspec(H•(G, k))

is called the cohomological support variety of M .

Before looking at an example, let us see how varieties provide information
about the representation type of the algebra kG.

Theorem 5. Let B ⊆ kG be a block, M ∈ modB.

(1) If B is representation-finite, then dimVG(M) ≤ 1 [15].

(2) If B is tame, then dimVG(M) ≤ 2 [8].

Example 4. Let kG = k(Z/(p))r be the group algebra of a p-elementary
abelian group of rank r. Then

H∗(G, k) := k[X1, . . . , Xr]⊗kΛ(Y1, . . . , Yr) deg(Xi) = 2, deg(Yi) = 1,

is the tensor product of a polynomial ring and an exterior algebra. We thus
obtain:

• VG(k) = Maxspec(H•(G, k)) ∼= Ar.

• kG is representation-finite ⇒ r = 1.

• kG is tame ⇒ r = 2.

In view of Theorem 2 this tells us that homological methods alone can in general
not be expected to give complete answers to the problem of finding blocks of a
given representation type.

2.2 Lie algebras

We have seen that finite algebraic groups consist of two building blocks,
reduced groups and infinitesimal groups. In this section we focus on infinitesimal
groups of height 1. It turns out that this is equivalent to studying restricted
Lie algebras. Given a finite group scheme G, we let ∆ : kG −→ kG⊗kkG denote
the comultiplication of kG. Then

Lie(G) := {x ∈ kG | ∆(x) = x ⊗ 1 + 1 ⊗ x }

is called the Lie algebra of G. Writing [x, y] = xy − yx, we have

(a) [x, y] ∈ Lie(G) for every x, y ∈ Lie(G), and
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the comultiplication of kG. Then
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(a) [x, y] ∈ Lie(G) for every x, y ∈ Lie(G), and

56



58

About 7 years ago, Eric Friedlander and Julia Pevtsova introduced a the-
ory of representation-theoretic support spaces that applies to all finite group
schemes. Since this approach is a bit technical, we confine our attention to
restricted Lie algebras.

Definition 5. Let (g, [p]) be a restricted Lie algebra. The conical variety

V (g) := {x ∈ g | x[p] = 0 }

is called the nullcone of g. Let M be a U0(g)-module. Then

V (g)M := {x ∈ V (g) | M |k[x] is not free } ∪ { 0 }

is referred to as the rank variety of M .

The name derives from the following alternative description of V (g)M : Given
x ∈ V (g), we denote by xM : M −→ M ; m �→ x.m the left multiplication by x
on M . Then we have x ∈ V (g)M if and only if rk(xM ) < p−1

p dimk M .

Example 6. Let g = sl(2).

• Note that V (sl(2)) is the set of nilpotent (2 × 2)-matrices, so that

V (sl(2)) = {
(

a b
c −a

)
| a2 + bc = 0 }.

Thus, V (sl(2)) is a two-dimensional, irreducible variety.

• Recall that there are exactly p simple U0(sl(2))-modules L(i) 0 ≤ i ≤ p−1
with dimk L(i) = i+1. If x ∈ V (sl(2))�V (sl(2))L(i), then L(i) is a free
module for the p-dimensional algebra k[x]. Thus, p| dimk L(i) and i = p−1.
Hence L(i) = L(p−1) is the Steinberg module, which is projective. We
therefore have (see also Corollary 2 below)

V (sl(2))L(i) =

{
V (sl(2)) i �= p−1

{0} i = p−1.

• The rank varieties of the baby Verma modules Z(i) := U0(sl(2))⊗U0(b)

ki are of dimension 0 or 1. Here b ⊆ sl(2) is the Borel subalgebra of
upper triangular matrices of trace zero, and ki denotes the one-dimensional
U0(b)-module with weight i ∈ { 0, . . . , p−1 }.

Theorem 6 ([17, 12]). Let (g, [p]) be a restricted Lie algebra. Then there
exists a homeomorphism

Ψ : Vg(k) −→ V (g)

such that Ψ(Vg(M)) = V (g)M for every M ∈ modU0(g).
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and relations defining the ideal J � k∆1 generated by

{βi+1αi − αi+1βi, αi+1αi, βi+1βi | i ∈ Z/(2) }.

These examples will turn out to be of major importance for our determination
of the tame infinitesimal groups of odd characteristic. The first example is
essentially the reason for the validity of the following result:

Proposition 2 ([9]). Suppose that p ≥ 3, and let G be a solvable infinitesi-
mal group. Then B0(G) is either representation-finite or wild.

Turning to the second example, we observe that the algebra k[∆1]/J is tame.
In fact, our algebra belongs to an important class of tame algebras, the so-called
special biserial algebras. The uniformity of the presentation of these blocks is not
accidental; it is a consequence of the so-called translation principle [18], which
affords the passage between certain blocks. Roughly speaking, one proceeds as
follows: Given two blocks B, C of U0(g) and a simple module S, one considers
the functor

TrS : modB −→ mod C ; M �→ eC · (S ⊗k M).

Here eC ∈ U0(g) is the central idempotent defining the block C. Under cer-
tain compatibility conditions on B, C and S, this functor is in fact a Morita
equivalence. The easiest instance of the translation principle is given by one-
dimensional modules. In particular, all blocks of basic cocommutative Hopf
algebras (i.e., those corresponding to group schemes of upper triangular matri-
ces) are isomorphic.

2.3 Rank varieties

Although being of theoretical importance, support varieties are inherently
intractable. Quillen’s early work on the spectrum of the cohomology ring of
a finite group and Chouinard’s result on projective modules suggested that
elementary abelian groups could play an important rôle. Dade noticed a further
reduction to cyclic shifted subgroups. These observations led Jon Carlson to
his representation-theoretic notion of a rank variety. A few years later a similar
theory for restricted Lie algebras was developed by Friedlander-Parshall and
Jantzen.
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happens precisely, when p = 2, and the Sylow-2-subgroups of G are dihedral,
semidihedral, or generalized quaternion.

Recall that

kG = Λ∗G

is a skew group algebra, where G = G(k) is the finite group of k-rational points
of G, and Λ = kG0 is the Hopf algebra of an infinitesimal group scheme.

3.1 A basic reduction

In the sequel, we write g := Lie(G) and assume that p ≥ 3.

Definition 6. The group scheme G is linearly reductive if the associative
algebra kG is semi-simple.

Recall that Nagata’s Theorem 3 describes the structure of the linearly re-
ductive groups. Using rank varieties, we obtain the following result:

Theorem 7 ([7, 9]). If B0(G) is tame, then

(a) p ∤ |G(k)|, and

(b) g/C(g) ∼= sl(2), where C(g) denotes the center of g.

In particular, g is a central extension of sl(2). Since the Chevalley-Eilenberg
cohomology group H2(sl(2), k) vanishes, such an extension splits, when con-
sidered as one of ordinary Lie algebras. General theory then shows that the
structure of g = sl(2) ⊕ V is given as follows:

[(x, v), (y, w)] := ([x, y], 0) and (x, v)[p] = (x[p], ψ(x)+v[p]),

where ψ : sl(2) −→ V is p-semilinear. One can say when exactly U0(g) is tame.
Instead of going into the technical details, let us look at one particular example,
that reveals fundamental differences between finite groups and restricted Lie
algebras.

Example 7. Let { e, h, f } be the standard basis of sl(2) and suppose that
V = kv is one-dimensional. We define the Lie algebra sl(2)s := sl(2) ⊕ kv via

e[p] = 0 = f [p] ; h[p] = h + v ; v[p] = 0.

(This amounts to choosing the p-semilinear map ψs : sl(2) −→ kv ; ψs(
(

a b
c −a

)
) =

apv.) The algebra U0(sl(2)s) turns out to be tame. However, the subalgebra
U0(ke ⊕ kv) ∼= k(Z/(p)×Z/(p)) is wild. By contrast, Brauer’s Third Main
Theorem implies that subgroups of tame finite groups are always tame.

61

This result tells us that for our intents and purposes rank varieties are as
good a cohomological support varieties. Theorem 5 now implies:

Corollary 1. Let G be a finite algebraic group with Lie algebra g.

(1) If B0(G) is representation-finite, then dimV (g) ≤ 1.

(2) If B0(G) is tame, then dimV (g) ≤ 2.

So why did we introduce support varieties to begin with? Let us look at the
following result:

Corollary 2. Let (g, [p]) be a restricted Lie algebra, M be a U0(g)-module.
Then the following statements are equivalent:

(1) M is projective.

(2) V (g)M = { 0 }.

Proof. (1) ⇒ (2). Let x ∈ V (g). By the PBW-Theorem, U0(g) is a free k[x]-
module. Hence M |k[x] is projective, so that x = 0.

(2) ⇒ (1). If V (g)M = { 0 }, then Vg(M) is finite. Recall that

ΦM : H•(g, k) −→ Ext∗U0(g)(M, M)

is a finite morphism. Since the Krull dimension dim H•(g, k)/ ker ΦM = dimVg(M)
= 0, the algebra Ext∗(M, M) is finite-dimensional. It follows that there exists
n0 ∈ N such that Extn

U0(g)(M,−) = 0 for all n ≥ n0. Hence M has finite pro-

jective dimension. But U0(g) is a Hopf algebra and hence self-injective. This
implies that M is projective. QED

The foregoing result suggests that dimV (g)M has a representation-theoretic
interpretation. Indeed,

dimV (g)M = cxU0(g)(M)

is the complexity of M , that is, the polynomial rate of growth of a minimal
projective resolution of M .

3 Binary polyhedral groups, McKay quivers, and tame

blocks

Throughout, G denotes a finite group scheme over an algebraically closed
field k of characteristic char(k) = p > 0. We want to know when the prin-
cipal block B0(G) has tame representation type. If G is a finite group, this
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• Vertices: { 1, . . . , n }

• Arrows: i
aij−→ j.

Example 8. (1) Let G be an abelian group with p ∤ord(G). If V is a faithful
G-module with simple constituents kλ1

, . . . , kλr
, then the character group X(G)

is generated by S := {λ1, . . . , λr } and the McKay quiver of G relative to V is
the Cayley graph of X(G) relative to S.

(2) Let G be a finite group with p ∤ ord(G), V be a faithful G-module.
By Burnside’s classical theorem, every simple G-module is a direct summand
of some tensor power V ⊗n. This implies that the quiver ΨV (G) is connected.
There is a version of Burnside’s result for finite group schemes.

Let us return to our simplified context. We thus have

Λ = U0(sl(2))∗G,

with G ⊆ SL(2)(k) acting on sl(2) via automorphisms, and p not dividing the
order of G. This implies that the McKay quiver ΨL(1)(G) of G relative to the
two-dimensional standard representation L(1) = k2 is connected.

It turns out that a binary polyhedral group is uniquely determined by its
McKay graph ΨL(1)(G). Here is the list of groups up to conjugation in SL(2)(k):

G ΨL(1)(G)

Z/(n) Ãn−1

Qn D̃n+2

T Ẽ6

O Ẽ7

I Ẽ8.

The left-hand column gives the isomorphism types of the finite groups. Here
Qn denotes the quaternion group of order 4n, and T , O, and I refer to the
binary tetrahedral group (of order 24), the binary octahedral group (of order
48) and the binary icosahedral group (of order 120), respectively. The quivers
corresponding to the graphs in the right-hand column are obtained by replacing
each bond by • ⇆ •.

The above list will be sufficient for our simplified context. In general, one
needs to deal with linearly reductive group schemes G ⊆ SL(2).

Thus, modulo our simplifications, we know the groups that can occur, i.e., we
understand the Hopf algebra structure. Moreover, the affine quivers describing
the tame hereditary algebras also appear. How can we get the Ext-quiver of Λ?
The first step consists of finding the simple modules.
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We are going to simplify matters a little and assume from now on that
C(g) = (0). In the context of finite groups this amounts to assuming that the
Sylow-2-subgroup is a Klein four group. We are thus studying a Hopf algebra

Λ = U0(sl(2))∗G,

where G is a linearly reductive finite group that acts on U0(sl(2)) via auto-
morphisms of Hopf algebras. Hence G acts on sl(2) via automorphisms. If N
denotes the kernel of this action, then the principal block of Λ is isomorphic to
that of U0(sl(2))∗(G/N). Since Aut(sl(2)) ∼= PSL(2)(k), we may thus assume
G ⊆ PSL(2)(k). Passage to the double cover does not change the principal
block and thus yields G ⊆ SL(2)(k). In other words, G is a binary polyhedral
group. These groups were classified by Klein around 1884.

3.2 Extended Dynkin diagrams and finite groups

Extended Dynkin diagrams are perhaps best known from Lie theory, where
they appear in the structure theory of affine Kac-Moody algebras. We have
seen in Section 1 another occurrence in the representation theory of hereditary
algebras. In this case, these diagrams describe the Ext-quivers of hereditary
algebras of tame representation type.

Extended Dynkin diagrams also appear in the representation theory of finite
groups. In his seminal work, J. McKay [22, 23] associated to a finite group G
and a complex G-module V a quiver ΨV (G) that has since played a rôle in a
number of contexts. Let’s generalize this a little to cover our setting.

• Let H = kG be the Hopf algebra of a linearly reductive finite group scheme.

• {S1, . . . , Sn } denotes a complete set of representatives for the isoclasses
of the simple H-modules.

• Fix an H-module V . Then V defines an (n×n)-matrix (aij) ∈ Matn(Z)
such that

V ⊗kSj
∼=

n⊕

i=1

aijSi 1 ≤ j ≤ n.

In other words, the integral (n×n)-matrix (aij) describes the left multiplication
by V in the Grothendieck ring K0(H) of H relative to its standard basis of
simple modules.

Definition 7. Let G be a linearly reductive finite group scheme, V be a G-
module. The McKay quiver ΨV (G) of G relative to V is given by the following
data:
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and I ⊆ kQ is the ideal generated by

{βi+1αi − αi−1βi, αi+1αi, βiβi+1 | i ∈ Z/(2n) }.

Thus, the effect of passing to the trivial extension is the familiar doubling pro-
cess. For n = 1 we obtain the algebra of Example 5(2).

It turns out that the tame principal blocks of finite group schemes are alge-
bras of this type:

Theorem 8 ([7]). Let G be a finite group scheme of characteristic p ≥ 3
such that B0(G) tame.

(1) There exists a linearly reductive group scheme G̃ ⊆ SL(2) such that the
Ext-quiver of B0(G) is isomorphic to the McKay quiver ΨL(1)(G̃).

(2) The block B0(G) is Morita equivalent to a generalized trivial extension of
a tame hereditary algebra.

Let us return to our example and consider G = T(2n), the cyclic group
of order 2n contained in the standard maximal torus T ⊆ SL(2) of diagonal
matrices. In that case, G̃ is the reduced group with G̃(k) = T(2n), and our
Theorem says that

B0(Λ) ∼M T (kÃ2n−1)

is Morita equivalent to the trivial extension, which we have considered above.
The other binary polyhedral groups give rise to the trivial extensions of the
corresponding affine quivers.

4 Small quantum groups

Let g be a finite-dimensional complex semi-simple Lie algebra. Given a
complex number ζ ∈ C�{0}, Drinfeld and Jimbo defined the quantum group
Uζ(g) of g. Roughly speaking, this Hopf algebra is a deformation of the ordinary
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Lemma 1. Let N � G be a normal subgroup. Suppose that L1, . . . , Ln are
simple G-modules such that {L1|N , . . . , Ln|N } is a complete set of representa-
tives for the simple N -modules.

(1) Every simple G-module S is of the form

S ∼= Li⊗kM

for a unique i ∈ { 1, . . . , n } and a unique simple G/N -module M .

(2) Suppose that Ext1N (V, V ) = (0) for every simple N -module V . If M , N
are simple G/N -modules, then

Ext1G(Li⊗kM, Lj⊗kN) ∼=
{

(0) i = j

HomG/N (M,Ext1N (Li, Lj)⊗kN) i �= j.

If G/N is linearly reductive, then the dimension of our Ext-group describes
the multiplicity of M in the G/N -module Ext1N (Li, Lj)⊗kN . We thus obtain a
connection between the Ext-quiver of kG and the McKay quiver of G/N relative
to Ext1N (Li, Lj).

The technical conditions of the Lemma may seem somewhat contrived, but
they do hold in classical contexts such as ours: There exist simple Λ-modules
L(0), . . . , L(p− 1), whose restrictions to U0(sl(2)) give all simple U0(sl(2))-
modules. Moreover, there are isomorphisms of G-modules

Ext1sl(2)(L(i), L(j)) ∼=
{

(0) i+j �= p−2

L(1) otherwise.

The Lemma now shows that the Ext-graph of Λ consists of the extended Dynkin
diagrams that appear in the classification of the tame hereditary algebras.

Group algebras, or Hopf algebras in general, are self-injective and thus are
hereditary only in case they are semi-simple (no arrows). The passage from
hereditary algebras to self-injective algebras is given by the notion of trivial
extension.

Given an algebra Λ, the trivial extension of Λ is the semidirect product
T (Λ) := Λ ⋉ Λ∗ of Λ with its bimodule Λ∗:

(a, f) · (b, g) := (ab, a.g + f.b) ∀ a, b ∈ Λ, f, g ∈ Λ∗.

The algebra T (Λ) is symmetric, and one can often compute the quiver and the
relations of T (Λ). For instance, if ∆n = Ã2n−1 is the quiver without paths of
length 2, then T (k∆n) = kQ/I, where Q is given by

64



65

1

β1����
��

��
�

α1 ��
2

β2

��
· · · ��

n−2· · ·��

αn−2 ��
n−1

βn−1

��
αn−1

���
��

��
��

0

α0

���������

β0

���
��

��
�� n

βn

���������

αn
����

��
��

�

2n−1

α2n−1

��������� β2n−1 ��
2n−2

α2n−2

��
· · · ��

n+2· · ·��

βn+2 ��
n+1

αn+1

��

βn+1

���������

and I ⊆ kQ is the ideal generated by

{βi+1αi − αi−1βi, αi+1αi, βiβi+1 | i ∈ Z/(2n) }.

Thus, the effect of passing to the trivial extension is the familiar doubling pro-
cess. For n = 1 we obtain the algebra of Example 5(2).

It turns out that the tame principal blocks of finite group schemes are alge-
bras of this type:

Theorem 8 ([7]). Let G be a finite group scheme of characteristic p ≥ 3
such that B0(G) tame.

(1) There exists a linearly reductive group scheme G̃ ⊆ SL(2) such that the
Ext-quiver of B0(G) is isomorphic to the McKay quiver ΨL(1)(G̃).

(2) The block B0(G) is Morita equivalent to a generalized trivial extension of
a tame hereditary algebra.

Let us return to our example and consider G = T(2n), the cyclic group
of order 2n contained in the standard maximal torus T ⊆ SL(2) of diagonal
matrices. In that case, G̃ is the reduced group with G̃(k) = T(2n), and our
Theorem says that

B0(Λ) ∼M T (kÃ2n−1)

is Morita equivalent to the trivial extension, which we have considered above.
The other binary polyhedral groups give rise to the trivial extensions of the
corresponding affine quivers.

4 Small quantum groups

Let g be a finite-dimensional complex semi-simple Lie algebra. Given a
complex number ζ ∈ C�{0}, Drinfeld and Jimbo defined the quantum group
Uζ(g) of g. Roughly speaking, this Hopf algebra is a deformation of the ordinary

65

Lemma 1. Let N � G be a normal subgroup. Suppose that L1, . . . , Ln are
simple G-modules such that {L1|N , . . . , Ln|N } is a complete set of representa-
tives for the simple N -modules.

(1) Every simple G-module S is of the form

S ∼= Li⊗kM

for a unique i ∈ { 1, . . . , n } and a unique simple G/N -module M .

(2) Suppose that Ext1N (V, V ) = (0) for every simple N -module V . If M , N
are simple G/N -modules, then

Ext1G(Li⊗kM, Lj⊗kN) ∼=
{

(0) i = j

HomG/N (M,Ext1N (Li, Lj)⊗kN) i �= j.

If G/N is linearly reductive, then the dimension of our Ext-group describes
the multiplicity of M in the G/N -module Ext1N (Li, Lj)⊗kN . We thus obtain a
connection between the Ext-quiver of kG and the McKay quiver of G/N relative
to Ext1N (Li, Lj).

The technical conditions of the Lemma may seem somewhat contrived, but
they do hold in classical contexts such as ours: There exist simple Λ-modules
L(0), . . . , L(p− 1), whose restrictions to U0(sl(2)) give all simple U0(sl(2))-
modules. Moreover, there are isomorphisms of G-modules

Ext1sl(2)(L(i), L(j)) ∼=
{

(0) i+j �= p−2

L(1) otherwise.

The Lemma now shows that the Ext-graph of Λ consists of the extended Dynkin
diagrams that appear in the classification of the tame hereditary algebras.

Group algebras, or Hopf algebras in general, are self-injective and thus are
hereditary only in case they are semi-simple (no arrows). The passage from
hereditary algebras to self-injective algebras is given by the notion of trivial
extension.

Given an algebra Λ, the trivial extension of Λ is the semidirect product
T (Λ) := Λ ⋉ Λ∗ of Λ with its bimodule Λ∗:

(a, f) · (b, g) := (ab, a.g + f.b) ∀ a, b ∈ Λ, f, g ∈ Λ∗.

The algebra T (Λ) is symmetric, and one can often compute the quiver and the
relations of T (Λ). For instance, if ∆n = Ã2n−1 is the quiver without paths of
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The representation theory of the trivial extension of the Kronecker quiver
• ⇉ • is completely understood.

Support spaces and Dynkin diagrams also appear in the context of Auslander-
Reiten theory. Given a self-injective Λ, one defines a quiver Γs(Λ), which is an
important invariant of its Morita equivalence class. The vertices of the so-called
stable Auslander-Reiten quiver are the isoclasses of the non-projective inde-
composable Λ-modules. Arrows are given by irreducible morphisms. Roughly,
speaking such a non-isomorphism does not factor non-trivially through any in-
decomposable Λ-module. A third ingredient is the Auslander-Reiten translation
τ : Γs(Λ) −→ Γs(Λ), which reflects homological properties. A fundamental re-
sult by Riedtmann states that the isomorphism class of a connected component
Θ ⊆ Γs(Λ) is essentially determined by an undirected tree TΘ, the tree class of
Θ. For fg-Hopf algebras, the possible tree classes are finite Dynkin diagrams,
Euclidean diagrams or infinite Dynkin diagrams of type A∞, D∞, A∞

∞. In con-
crete cases, support varieties can be used to decide, which tree class a given
component has.

Recall that uζ(g) ⊆ Uζ(g) is a Hopf subalgebra. We let h denote the Coxeter
number of g.

Theorem 10 ([21]). Let ℓ ≥ h. Suppose that Θ ⊆ Γs(uζ(g)) is a component
containing the restriction of a Uζ(g)-module. If g �= sl(2) is simple, then TΘ =
A∞.

Proof. Given M, N ∈ Θ one can show that Vuζ(g)(M) = Vuζ(g)(N), so that we
have the support variety Vuζ(g)(Θ). This variety corresponds to a Zariski closed
subspace XΘ of the nilpotent cone N ⊆ g. Since Θ contains the restriction of a
Uζ(g)-module, XΘ is invariant under the adjoint action of the algebraic group G
of g. As g �= sl(2), a little more structure theory implies that dimVuζ(g)(Θ) ≥ 3.
Such components are known to have tree class A∞. QED

Using this result, one can for instance locate the simple uζ(g)-modules within
the AR-quiver and show that they have precisely one predecessor. This in turn
yields information concerning the structure of certain subfactors of principal
indecomposable uζ(g)-modules.

Acknowledgements. I would like to thank Francesco Catino and Salva-
tore Siciliano for their hospitality, and Julian Külshammer for proofreading the
manuscript.
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enveloping algebra U(g). Technically, it is defined via a Chevalley basis of
g and the so-called quantum Serre relations. If ζ is not a root of unity, all
finite-dimensional Uζ(g)-modules are completely reducible. Alternatively, its
representation theory resembles that of Lie algebras in positive characteristic.
Lusztig defined a finite-dimensional Hopf subalgebra uζ(g) of Uζ(g), which can
be thought of as an analogue of the restricted enveloping algebra of a restricted
Lie algebra. If ζ is a primitive ℓ-th root of unity, then dimk uζ(g) = ℓdimk g. To
cut down on subtle technicalities, we shall henceforth assume that 6 ∤ℓ.

In order to develop a theory of supports for uζ(g), one needs an analogue of
the Friedlander-Suslin Theorem. Since there are other cases of Hopf algebras,
where such a result is available, it is expedient to formulate the relevant prop-
erties in broader context. A rather detailed summary of the current state of the
art can be found in [19].

We consider a (finite-dimensional) Hopf algebra Λ over a algebraically closed
field k (of arbitrary characteristic). It is well-known that the cohomology ring
H∗(Λ, k) is graded commutative, so that the even cohomology ring H•(Λ, k) is
a commutative k-algebra.

Definition 8. Let Λ be a Hopf algebra. We say that Λ is an fg-Hopf algebra,
provided

(a) the algebra H•(Λ, k) is finitely generated, and

(b) for every M ∈ mod Λ, the algebra homomorphism ΦM : H•(Λ, k) −→
Ext∗Λ(M, M) is finite.

In this case, Maxspec(H•(Λ, k)) carries the structure of an affine variety and
one defines the support variety

VΛ(M) := Z(ker ΦM )

for every M ∈ modΛ. One can show that M �→ VΛ(M) enjoys properties
analogous to those known for finite group schemes. In particular, Feldvoss and
Witherspoon [10] have generalized Theorem 5 to the present context. Using
these techniques one obtains the following result:

Theorem 9 ([20]). Let g be simple and suppose that ℓ is good for the root
system of g. If B ⊆ uζ(g) is a block, then the following statements hold:

(1) B is representation-finite if and only and if B is the simple block belonging
to the Steinberg module.

(2) If B has tame representation type, then g ∼= sl(2) and B is Morita equiva-
lent to T (k(• ⇉ •)).
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1 Introduction

This survey article is an expanded version of the lectures that I delivered
on the occasion of the conference “Advances in Group Theory and Applications
2011”, which took place in Porto Cesareo. The aim of my lectures was to
describe the state of knowledge on the effect of the imposition of finiteness
conditions on a (generalized) soluble group, with special attention to conjugacy
classes, generalized normal subgroups and lattice properties. My interest in
this topic started about thirtyfive years ago when - as a young student - I was
attending the lectures of Mario Curzio, and my ideas about mathematics were
strongly influenced by Federico Cafiero. It was an exciting time, especially
because of the impressive development of the theory produced by the schools
founded by Reinhold Baer, Philip Hall and Sergei N. Černikov. Since then
I never stopped working on these topics, and even though the fashions have
changed, I am absolutely convinced that the theory of groups is full of fascinating
properties still waiting to be discovered and exciting results that are waiting to
be proved (and of course I mean here the theory of infinite soluble groups).
I hope that these short notes may be able to transmit - especially to young
people - the passion for this discipline, which in turn was forwarded to me by
mathematicians much better than me.

Most notation is standard and can be found in [31].
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1 Introduction

This survey article is an expanded version of the lectures that I delivered
on the occasion of the conference “Advances in Group Theory and Applications
2011”, which took place in Porto Cesareo. The aim of my lectures was to
describe the state of knowledge on the effect of the imposition of finiteness
conditions on a (generalized) soluble group, with special attention to conjugacy
classes, generalized normal subgroups and lattice properties. My interest in
this topic started about thirtyfive years ago when - as a young student - I was
attending the lectures of Mario Curzio, and my ideas about mathematics were
strongly influenced by Federico Cafiero. It was an exciting time, especially
because of the impressive development of the theory produced by the schools
founded by Reinhold Baer, Philip Hall and Sergei N. Černikov. Since then
I never stopped working on these topics, and even though the fashions have
changed, I am absolutely convinced that the theory of groups is full of fascinating
properties still waiting to be discovered and exciting results that are waiting to
be proved (and of course I mean here the theory of infinite soluble groups).
I hope that these short notes may be able to transmit - especially to young
people - the passion for this discipline, which in turn was forwarded to me by
mathematicians much better than me.

Most notation is standard and can be found in [31].
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This paper is dedicated to my youngest sons Cristiano and Reinhold, who
were born during the organization of this conference.

2 Generalized normal subgroups

In 1955, a relevant year for the development of the theory of infinite groups,
Bernhard H. Neumann [29] proved the following important result. It shows that
the imposition of suitable normality conditions to all subgroups can be used to
characterize group classes generalizing the class of abelian groups.

Theorem 1. (B.H. Neumann [29]) Let G be a group. Then each subgroup
of G has only finitely many conjugates if and only if the centre Z(G) has finite
index in G.

It follows in particular from Neumann’s theorem that if a group G has finite
conjugacy classes of subgroups, then there is an upper bound for the orders of
such classes.

A group G is called an FC-group if every element of G has only finitely many
conjugates, or equivalently if the index |G : CG(x)| is finite for each element x
of G. Finite groups and abelian groups are obvious examples of groups with the
property FC; moreover, it is also clear that all central-by-finite groups belong
to the class of FC-groups. Since for each element x of a group G the centralizer
of the normal subgroup �x�G coincides with the core of the centralizer CG(x), it
follows easily that a group is an FC-group if and only if it has finite conjugacy
classes of cyclic subgroups.

If x is any element of a group G, we have xg = x[x, g] for each element g of G,
and hence the conjugacy class of x is contained in the coset xG′, where G′ is
the commutator subgroup of G. Thus groups with finite commutator subgroup
are FC-groups.

The FC-property for groups have been introduced seventy years ago, and
since their first appearance in the literature important contributions have been
given by several authors. A special mention is due here to R. Baer, Y.M.
Gorcakov, P. Hall, L.A. Kurdachenko, B.H. Neumann, M.J. Tomkinson for the
particular relevance of their works.

The direct product of an arbitrary collection of finite groups has clearly
the property FC, and so in particular the conjugacy classes of elements of an
FC-group can have unbounded orders, in contrast to the behavior of groups
with finite conjugacy classes of subgroups. In fact, groups with boundedly
finite conjugacy classes form a very special class of FC-groups, as the following
theorem shows.

Theorem 2. (B.H. Neumann [28]) A group G has boundedly finite conju-
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gacy classes of elements if and only if its commutator subgroup G′ is finite.

The proof of Theorem 2 essentially depends on (and contains as a special
case) a celebrated result of I. Schur concerning the relation between the size of
the centre and that of the commutator subgroup of a group. This is one of the
most important theorems in the theory of infinite groups.

Theorem 3. (I. Schur [40]) Let G be a group whose centre has finite index.
Then the commutator subgroup G′ of G is finite.

An easy application of such result proves that if G is a group such that the
factor group G/Z(G) is locally finite, then the commutator subgroup G′ of G is
locally finite. Since a finitely generated group has the FC-property if and only
if it is finite over its centre, it follows also that the commutator subgroup of
any FC-group is locally finite; in particular, the elements of finite order of an
arbitrary FC-group form a subgroup. Thus also Dietzmann’s Lemma, stating
that periodic FC-groups are covered by their finite normal subgroups, can be
seen as a direct consequence of the theorem of Schur.

Schur’s theorem has been extended by Baer to any term of the upper central
series (with finite ordinal type) in the following way.

Theorem 4. (R. Baer [1]) Let G be a group in which the term Zi(G) of
the upper central series has finite index for some positive integer i. Then the
(i + 1)-th term γi+1(G) of the lower central series of G is finite.

Although finitely generated finite-by-abelian groups are central-by-finite,
the consideration of any infinite extraspecial group shows that the converse
of Schur’s theorem is false in the general case. On the other hand, Philip Hall
was able to obtain a relevant and useful partial converse of Theorem 4; of course,
it provides as a special case a partial converse for the theorem of Schur.

Theorem 5. (P. Hall [23]) Let G be a group such that the (i + 1)-th term
γi+1(G) of the lower central series of G is finite. Then the factor group G/Z2i(G)
is finite.

Combining the theorems of Baer and Hall, we have the following statement.

Corollary 1. A group G is finite-by-nilpotent if and only if it is finite over
some term (with finite ordinal type) of its upper central series.

If G is any group, the last term of its (transfinite) upper central series is
called the hypercentre of G, and the group G is hypercentral if it coincides with
its hypercentre.

The consideration of the locally dihedral 2-group D(2∞) shows that Baer’s
theorem cannot be extended to terms with infinite ordinal type of the upper
central series. In fact,

Zω+1(D(2∞)) = D(2∞)
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but

γ2(D(2∞)) = γ3(D(2∞)) = Z(2∞).

Similarly, free non-abelian groups show that Hall’s result does not hold for terms
with infinite ordinal type of the lower central series. In fact, if F is any free non-
abelian group, then γω(F ) = Z(F ) = {1}. On the other hand, the statement
of Corollary 1 can be generalized as follows.

Theorem 6. (M. De Falco - F. de Giovanni - C. Musella - Y.P. Sysak [13])
Let G be a group. The hypercentre of G has finite index if and only if G contains
a finite normal subgroup N such that the factor group G/N is hypercentral.

For other types of generalizations of Schur’s theorem see for instance [19].

It was mentioned above that any direct product of finite groups has the
FC-property. Such direct products are obviously also periodic and residually
finite, and it was conversely proved by P. Hall [24] that every periodic countable
residually finite FC-group is isomorphic to a subgroup of a direct product of a
collection of finite groups (recall here that a group is called residually finite if the
intersection of all its subgroups of finite index is trivial). An easy example shows
that this property does not hold in general for uncountable groups. The result of
P. Hall was extended by L.A. Kurdachenko [27] to the case of metabelian groups
with countable centre. Moreover, many authors have determined conditions
under which an FC-group is isomorphic at least to a section of a direct product
of finite groups. On this problem we mention here only the following interesting
result.

Theorem 7. (M.J. Tomkinson [42]) Let G be an FC-group. Then the com-
mutator subgroup G′ of G is isomorphic to a section of the direct product of a
collection of finite groups.

Clearly, a subgroup X of a group G has only finitely many conjugates if
and only if it is normal in a subgroup of finite index of G. One may consider
other generalized normality properties, in which the obstruction to normality is
represented by a finite section of the group. In particular, another theorem of
B.H. Neumann deals with the case of groups in which every subgroup has finite
index in a normal subgroup.

Theorem 8. (B.H. Neumann [29]) A group G has finite commutator sub-
group if and only if the index |XG : X| is finite for each subgroup X of G.

Note that it is also easy to prove that a group G has the property FC if and
only if each cyclic subgroup of G has finite index in its normal closure.

For our purposes, it is convenient to introduce the following definitions.

Let G be a group, and let X be a subgroup of G. Then

• X is almost normal in G if it has finitely many conjugates in G, or equiv-

74

alently if the index |G : NG(X)| is finite,

• X is nearly normal in G if it has finite index in its normal closure XG,

• X is normal-by-finite in G if the core XG has finite index in X.

Using this terminology, we can describe FC-groups in the following way:

For a group G the following properties are equivalent:

• G is an FC-group,

• all cyclic subgroups of G are almost normal,

• all cyclic subgroups of G are nearly normal.

Clearly, any finite subgroup of an arbitrary group is normal-by-finite, and so
the imposition of this latter condition to (cyclic) subgroups does not force the
group to have the FC-property. However, it follows from Dietzmann’s Lemma
that if all subgroups of an FC-group G are normal-by-finite, then every sub-
group of G is also almost normal, and hence G/Z(G) is finite.

Although almost normality and near normality are equivalent for cyclic (and
so even for finitely) subgroups, easy examples show that these two concepts are
usually incomparable for arbitrary subgroups. On the other hand, it can be
proved that each almost normal subgroup of an FC-group is nearly normal, and
that nearly normal subgroups of finite rank are always almost normal (see [21]).
Moreover, combining Neumann’s results with the theorem of Schur, we obtain:

Corollary 2. Let G be a group in which all subgroups are almost normal.
Then every subgroup of G is nearly normal.

The above corollary has been extended in [21], proving that if G is a group
in which every abelian subgroup is either almost normal or nearly normal, then
the commutator subgroup of G is finite, and so all subgroups of G are nearly
normal. Observe also that the hypotheses in the statements of Theorem 1
and Theorem 8 can be weakened, requiring that only the abelian subgroups are
almost normal or nearly normal, respectively.

Theorem 9. (I.I. Eremin [18]) Let G be a group in which all abelian sub-
groups are almost normal. Then the factor group G/Z(G) is finite.

Theorem 10. (M.J. Tomkinson [43]) Let G be a group in which all abelian
subgroups are nearly normal. Then the commutator subgroup G′ of G is finite.

A group G is called a BCF -group if all its subgroups are normal-by-finite
and have bounded order over the core. Thus a group is BCF if and only if there
exists a positive integer k such that |X : XG| ≤ k for each subgroup X of G.
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Theorem 11. (J. Buckley - J.C. Lennox - B.H. Neumann - H. Smith -
J. Wiegold [4]) Let G be a locally finite BCF -group. Then G contains an abelian
subgroup of finite index.

The above theorem has been later extended to the case of locally graded
BCF -groups by H. Smith and J. Wiegold [41].

The structure of groups in which all non-abelian subgroups are either almost
normal or nearly normal has been investigated by M. De Falco, F. de Giovanni,
C. Musella and Y.P. Sysak [12]. The basic situation in this case is that of groups
whose non-abelian subgroups are normal. Such groups are called metahamil-
tonian and have been introduced by G.M. Romalis and N.F. Sesekin in 1966.
Of course, Tarski groups (i.e. infinite simple groups whose proper non-trivial
subgroups have prime order) are metahamiltonian. On the other hand, within
the universe of (generalized) soluble groups, any metahamiltonian group has
(boundedly) finite conjugacy classes. In fact:

Theorem 12. (G.M. Romalis - N.F. Sesekin [34],[35],[36]) Let G be a locally
graded metahamiltonian group. Then the commutator subgroup G′ of G is finite
of prime-power order.

Recall here that a group G is locally graded if every finitely generated non-
trivial subgroup of G has a proper subgroup of finite index. It is easy to see
that any locally (soluble-by-finite) group is locally graded. Thus locally graded
groups form a large class of generalized soluble groups, and the assumption for
a group to be locally graded is enough to avoid Tarski groups and other similar
pathologies.

Neumann’s theorems suggest that the behavior of normalizers has a strong
influence on the structure of a group. In fact, groups with few normalizers of
subgroups with a given property are of a very special type.

Theorem 13. (Y.D.Polovickĭı [30]) Let G be a group with finitely many
normalizers of abelian subgroups. Then the factor group G/Z(G) is finite.

This theorem is a special case of a later result by F. De Mari and F. de Gio-
vanni [15] concerning groups with few normalizer subgroups.

The norm N(G) of a group G is the intersection of all normalizers of sub-
groups of G. Thus the norm of a group consists of all elements which induces by
conjugation a power automorphism (recall that an automorphism of a group G
is called a power automorphism if it maps each subgroup of G onto itself). As
power automorphisms are central (see [6]), it follows that the norm of an ar-
bitrary group G is contained in the second centre Z2(G) of G. Moreover, as a
consequence of Polovickii’s theorem, we have that that if the index |G : N(G)|
is finite, then also the centre Z(G) has finite index in G, confirming that the
section N(G)/Z(G) is usually small.
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The last part of this section is devoted to the study of certain finiteness
conditions that are strictly related to the property FC, at least within the uni-
verse of locally (soluble-by-finite) groups. On this type of problems see also [22]
and [16].

A group G is said to have the property K if for each element x of G the set

{[x, H] | H ≤ G}

is finite. Similarly, a group G has the property K∞ if the set

{[x, H] | H ≤ G, H infinite}

is finite for every element x of G. As the commutator subgroup of any FC-group
is locally finite, it is easy to prove that all FC-groups have the property K.
Although also Tarski groups have the property K, the situation is completely
clear in the case of locally (soluble-by-finite) groups.

Theorem 14. (M. De Falco - F. de Giovanni - C. Musella [9]) A group G is
an FC-group if and only if it is locally (soluble-by-finite) and has the property K.

Also groups in the class K∞ are not too far from having the FC-property.

Theorem 15. (M. De Falco - F. de Giovanni - C. Musella [9]) A soluble-
by-finite group G has the property K∞ if and only if it is either an FC-group
or a finite extension of a group of type p∞ for some prime number p.

Finally, we say that a group G has the property N if the set

{[X, H] | H ≤ G}

is finite for each subgroup X of G. It turns out that for soluble groups the
property N is equivalent to the property BFC.

Theorem 16. (M. De Falco - F. de Giovanni - C. Musella [9]) Let G be a
soluble group with the property N. Then the commutator subgroup G′ of G is
finite.

3 Lattice properties

If G is any group, the set L(G) of all subgroups of G is a complete lattice with
respect to the ordinary set-theoretic inclusion. In this lattice, the operations ∧
and ∨ are given by the rules

X ∧ Y = X ∩ Y
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and ∨ are given by the rules
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and
X ∨ Y = �X, Y �

for each pair (X, Y ) of subgroups of G. There is a very large literature on
the relations between the structure of a group and that of its subgroup lattice
(see for instance the monograph [39], but also the papers [7],[8],[10],[11],[20] for
recent developments). For instance, one of the first and significant results was
proved by O. Ore, and shows that a group has distributive subgroup lattice if
and only if it is locally cyclic.

Let G and G∗ be groups. A projectivity from G onto G∗ is an isomorphism
from the lattice L(G) of all subgroups of G onto the subgroup lattice L(G∗)
of G∗; if there exists such a map, G∗ is said to be a projective image of G. A
group class X is invariant under projectivities if all projective images of groups
in X are likewise X-groups. Relevant examples of group classes invariant under
projectivities are the following:
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• the class of all finite groups

• the class of all periodic groups

• the class of all soluble groups (B. Yakovlev, 1970)

• the class of all groups with finite Prüfer rank

• the class of all soluble minimax groups (R. Baer, 1968)

Moreover, it is clear that any group class defined by a lattice-theoretic prop-
erty is invariant under projectivities; in particular, it follows from Ore’s theorem
quoted above that the class of locally cyclic groups is invariant under projec-
tivities. On the other hand, the class of all abelian groups does not have such
property. In fact, the elementary abelian group of order 9 and the symmetric
group of degree 3 have isomorphic subgroup lattices.

It is easy to understand that the main obstacle in the study of projec-
tive images of abelian groups is the fact that normality is not preserved under
projectivities; actually, the behavior of images of normal subgroups under pro-
jectivities plays a central role in the investigations concerning projectivities of
groups.

Let L be any lattice. An element a of L is said to be modular if

(a ∨ x) ∧ y = a ∨ (x ∧ y)

for all x, y ∈ L such that a ≤ y and

(a ∨ x) ∧ y = x ∨ (a ∧ y)

for all x, y ∈ L such that x ≤ y. The lattice L is modular if all its elements are
modular, i.e. if the identity

(x ∨ y) ∧ z = x ∨ (y ∧ z)

holds in L, whenever x, y, z are elements such that x ≤ z.
If N is any normal subgroup of a group G, and ϕ is a projectivity from G

onto another group G∗, it follows from the Dedekind’s modular law that the
image Nϕ of N is a modular element of the lattice L(G∗). In particular, any
projective image of an abelian group has modular subgroup lattice, and groups
with modular subgroup lattice can be considered as suitable lattice approxima-
tions of abelian groups.

Locally finite groups with modular subgroup lattice have been completely
classified by K. Iwasawa [25] almost seventy years ago, while a full descrip-
tion of periodic groups with modular subgroup lattice has been obtained by
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R. Schmidt [38] in 1986. Moreover, it turns out that the commutator subgroup
of any group with modular subgroup lattice is periodic, and hence a torsion-free
group has modular subgroup lattice if and only if it is abelian.

In the study of finiteness conditions from a lattice point of view, the fol-
lowing relevant result by G. Zacher is crucial; it was independently proved also
by I.A. Rips.

Theorem 17. (G. Zacher [45]) Let ϕ be a projectivity from a group G onto
a group G∗, and let H be a subgroup of finite index of G. Then the subgroup Hϕ

has finite index in G∗.

As a direct consequence, we have:

Corollary 3. The class of residually finite groups is invariant under pro-
jectivities.

A few years later, R. Schmidt [37] obtained a lattice theoretic description
of the finiteness of the index of a subgroup, which of course allows to recognize
subgroups of finite index within the lattice of subgroups. On the other hand,
the index of a subgroup is not preserved under projectivities, as for instance all
groups of prime order obviously have isomorphic subgroup lattice. The following
result clarifies this situation.

Theorem 18. (M. De Falco - F. de Giovanni - C. Musella - R. Schmidt
[10]) Let G be a group and let X be a subgroup of finite index of G. Then the
number π(|G : X|) of prime factors (with multiplicity) of the index |G : X| can
be described by means of lattice properties. In particular, π(|G : X|) is invariant
under projectivities.

It is easy to show that there exists a group G with an infinite class of
conjugate elements such that the subgroup lattice of G is isomorphic to that
of an abelian group. Therefore the class of FC-groups is not invariant under
projectivities. Obviously, the same example also proves that neither the class
of central-by-finite groups is invariant under projectivities nor that of finite-by-
abelian groups. On the other hand, it is possible to study lattice analogues of
both central-by-finite groups and finite-by-abelian groups.

A subgroup M of a group G is said to be modularly embedded in G if the lat-
tice L(�x, M�) is modular for each element x of G. This concept was introduced
by P.G. Kontorovic and B.I. Plotkin [26] in order to characterize torsion-free
nilpotent groups by their subgroup lattices. Of course, any subgroup of the
centre of a group G is modularly embedded in G, and actually the modular em-
bedding seems to be the best translation of centrality into the subgroup lattice.
In fact, using modularly embedded subgroups, the following lattice interpreta-
tion of Schur’s theorem can be obtained.

Theorem 19. (M. De Falco - F. de Giovanni - C. Musella [8]) Let G be a
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group containing a modularly embedded subgroup of finite index. Then G has a
finite normal subgroup N such that the subgroup lattice L(G/N) is modular.

Suitable iterations of the above concepts allow to introduce lattice analogues
of nilpotent groups, and can probably be used in order to translate Theorem 4
and Theorem 5 in terms of lattice properties.

Also Neumann’s theorems have been investigated from a lattice point of
view. In order to describe the corresponding results we need the following defi-
nitions, which introduce certain relevant types of generalized normal subgroups.

Let G be a group, and let X be a subgroup of G.

• X is called almost modular if there exists a subgroup H of G containing
X such that the index |G : H| is finite and X is a modular subgroup of H

• X is called nearly modular if there exists a modular subgroup H of G
containing X such hat the index |H : X| is finite

It follows from Schmidt’s lattice characterization of the finiteness of the
index of a subgroup that the above definitions are purely lattice theoretic, and
so they can be given in any (complete) lattice. A lattice L is called almost
modular (respectively, nearly modular) if all its elements are almost modular
(respectively, nearly modular).

Groups with almost modular subgroup lattice can be seen as lattice ana-
logues of central-by-finite groups, while groups with nearly modular subgroup
lattice correspond in this context to finite-by-abelian groups.

Theorem 20. (F. de Giovanni - C. Musella - Y.P. Sysak [20]) Let G be a
periodic group. The subgroup lattice L(G) is almost modular if and only if G =
M ×K, where M is a group with modular subgroup lattice, K is an abelian-by-
finite group containing a finite normal subgroup N such that the lattice L(K/N)
is modular and π(M) ∩ π(K) = ∅.

Since a group is central-by-finite if and only if it is both abelian-by-finite and
finite-by-abelian, the above result provides a lattice corresponding of Theorem 1,
at least in the case of periodic groups. The next statement provides a lattice
translation of Theorem 8, again within the universe of periodic groups.

Theorem 21. (M. De Falco - F. de Giovanni - C. Musella - Y.P. Sysak [11])
Let G be a periodic group. The subgroup lattice L(G) is nearly modular if and
only if G contains a finite normal subgroup N such that the lattice L(G/N) is
modular.

The following natural problem is still unsolved.
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Question A Is it possible to obtain lattice translations of the theorems of
Eremin and Tomkinson on groups whose abelian subgroups are almost normal
or nearly normal (at least inside the class of locally finite groups)?

We mention finally that also some results concerning the class of BCF -
groups have been translated into the theory of subgroup lattices.

A group G is called a BMF -group if there exists a positive integer k such
that π(|X : core∗(X)|) ≤ k for each subgroup X of G, where core∗(X) denotes
the largest modular subgroup of G which is contained in X.

Theorem 22. (M. De Falco - F. de Giovanni - C. Musella [7]) Let G be a
locally finite BMF -group. Then G contains a subgroup M of finite index such
that the lattice L(M) is modular.

Question B Is it possible to extend Theorem 22 to the case of locally graded
BMF -groups?

4 Inertial properties

A subgroup X of a group G is said to be inert if the index |X : X ∩ Xg| is
finite for each element g of G. Clearly, every normal-by-finite subgroup is inert,
so that in particular normal subgroups and finite subgroups of arbitrary groups
are inert. A group is inertial if all its subgroups are inert. Thus CF -groups (i.e.
groups in which all subgroups are normal-by-finite) are inertial. The first result
of this section shows that within the universe of locally finite groups there are
no infinite simple inertial groups.

Theorem 23. (V.V. Belyaev - M. Kuzucuoglu - E. Seckin [3]) Let G be a
simple locally finite group. If G is inertial, then it is finite.

The latter theorem has recently been extended to the case of simple lo-
cally graded groups by M.R. Dixon, M. Evans and A. Tortora [17]. The struc-
ture of soluble groups in which all subgroups are inert has been investigated
by D.J.S. Robinson [33]; in particular, he characterized finitely generated solu-
ble inertial groups and soluble minimax inertial groups.

A subgroup X of a group G is said to be strongly inert if it has finite index
in �X, Xg� for each element g of G, and the group G is called strongly inertial
if all its subgroups are strongly inert. Thus nearly normal subgroups (and in
particular all subgroups of finite index) are strongly inert; it is also clear that
finite subgroups of locally finite groups are strongly inert. It is easy to prove
that any strongly inert subgroup is also inert, and hence strongly inertial groups
are inertial. Clearly, the subgroups of order 2 of the infinite dihedral group D∞
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are not strongly inert, although they are inert in D∞. Thus strongly inertial
groups have no infinite dihedral sections. It is easy to show that inert and
strongly inert subgroups of arbitrary groups have some inheritance properties.
In fact, we have:

Let G be a group, and let X and Y be subgroups of G such that Y ≤ X and
the index |X : Y | is finite.

• X is inert in G if and only if Y is inert in G;

• if X is strongly inert in G, then Y is strongly inert in G.

Moreover, abelian strongly inert subgroups have the following useful behav-
ior.

Lemma 1. Let X be an abelian strongly inert subgroup of a group G. Then
the subgroup [X, Xg] is finite for each element g of G.

Proof. As the indices |�X, Xg� : X| and |�X, Xg� : Xg| are finite, the subgroup
X∩Xg has finite index in �X, Xg�. Moreover, X∩Xg is contained in Z(�X, Xg�)
since X is abelian, and so it follows from Schur’s theorem that the commutator
subgroup �X, Xg�′ = [X, Xg] is finite. QED

Next result shows that all groups with finite conjugacy classes are strongly
inertial, and so also inertial.

Lemma 2. Every FC-group G is strongly inertial.

Proof. Let X be any subgroup of G, and H = �X, g� for some g in G. The
centralizer C = CH(�g�H) has finite index in H, so that the index |X : X ∩ C|
is likewise finite. Moreover, (X ∩ C)g = X ∩ C and X ∩ C is normal in H.
Application of Dietzmann’s Lemma yields that the normal closure of X/X ∩C
in H/X ∩ C is finite. Therefore X has finite index in XH and so X is strongly
inert in G. QED

It is also possible to prove that in an arbitrary group G the elements of finite
order form a locally finite subgroup if and only if all finite subgroups of G are
strongly inert. In particular, the elements of finite order of any strongly inertial
group form a locally finite subgroup.

Finitely generated strongly inertial groups are characterized by the following
result. In particular, it turns out that in this case strongly inertial groups
coincide with groups having the FC-property.

Theorem 24. (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi
[14]) Let G be a finitely generated strongly inertial group. Then the factor group
G/Z(G) is finite.
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Corollary 4. The commutator subgroup of any strongly inertial group is
locally finite.

In particular, any perfect strongly inertial group is locally finite, and so
Theorem 23 has the following consequence.

Corollary 5. Simple strongly inertial groups are finite.

Recall that a group G is minimax if it has a series of finite length whose
factors satisfy either the minimal or the maximal condition on subgroups. If G
is any soluble-by-finite minimax group, then its finite residual J is the largest
divisble subgroup, and J is the direct product of finitely many Prüfer subgroups.
Moreover, the Fitting subgroup F/J of G/J is nilpotent and G/F is finitely
generated and abelian-by-finite. If G is any soluble-by-finite minimax group,
the set of all prime numbers p such that G has a section of type p∞ is an
invariant, called the spectrum of G. A soluble-by-finite minimax group is called
p-primary if its finite residual is a p-group. For detailed informations on the
structure of soluble-by-finite minimax groups see [31], Chapter 10.
It is easy to prove the following result.

Lemma 3. Let G be a minimax residually finite group. If G is strongly
inertial, then the factor group G/Z(G) is finite.

In the above lemma, the hypothesis that the minimax group G is residually
finite cannot be dropped out, even in the non-periodic case. To see this, consider
the semidirect product G = �x�⋉P , where the normal subgroup P is of type p∞

for some prime number p and �x� an infinite cyclic subgroup such that ax = a1+p

for each a in P . Then G is a minimax strongly inertial group and its centre has
order p.

Let Q be a torsion-free abelian minimax group, and let D be a divisible
abelian p-group of finite rank (where p is a prime number). Consider D as a
trivial Q-module. Since Ext(Q, D) = {0}, it follows from the Universal Co-
efficients Theorem that the cohomology group H2(Q, D) is isomorphic to the
homomorphism group Hom(M(Q), D), where M(Q) is the Schur multiplier of Q
(in this case M(Q) is the exterior square Q

∧
Q of Q). Let δ be an element of in-

finite order of Hom(M(Q), D), and for all subgroups E < D and R < Q denote
by δE and δR the homomorphisms naturally induced by δ from M(Q) to D/E
and from M(R) to D, respectively. Assume also that the image (R ∧ y)δE is
finite for all elements y of Q, whenever δE,R = 0. In this situation a central
extension of D by Q with cohomology class δ is called a central extension of
type IIa (see [33]).

Theorem 25. (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi [14])
A soluble-by-finite p-primary minimax group is strongly inertial if and only if it
satisfies one of the following conditions:
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(a) The factor group G/Z(G) is finite.

(b) G is a Černikov group and all subgroups of its finite residual are normal
in G.

(c) G contains a finite normal subgroup N such that the group H = G/N
is the semidirect product of a divisible abelian normal p-subgroup D by a
subgroup Q with finite commutator subgroup such that Q/Q′ is torsion-
free, all subgroups of D are normal in H and p does not belong to the
spectrum of the centralizer of D in Q.

(d) G contains a finite normal subgroup N such that G/N is a central exten-
sion of type IIa.

Corollary 6. A soluble-by-finite minimax group is strongly inertial if and
only if it is inertial and has no infinite dihedral sections.

Next two results describe the behavior of groups in which all cyclic subgroups
are strongly inert and those in which all infinite subgroups are strongly inert.

Theorem 26. (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi [14])
Let G be a locally (soluble-by-finite) group. Then all cyclic subgroups of G are
strongly inert if and only if every finitely generated subgroup of G is central-by-
finite.

Theorem 27. (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi [14])
Let G be a locally (soluble-by-finite) group. Then all infinite subgroups of G are
strongly inert if and only if G is either strongly inertial or a finite extension of
an infinite cyclic subgroup.

Groups in which all subnormal subgrouops are nearly normal have been
investigated by C. Casolo [5]. We leave here as an open question the following
corresponding problem.

Question C Describe the structure of finitely generated soluble groups in
which all subnormal subgroups are strongly inert.
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Corollary 4. The commutator subgroup of any strongly inertial group is
locally finite.

In particular, any perfect strongly inertial group is locally finite, and so
Theorem 23 has the following consequence.

Corollary 5. Simple strongly inertial groups are finite.
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divisble subgroup, and J is the direct product of finitely many Prüfer subgroups.
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inertial, then the factor group G/Z(G) is finite.
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for some prime number p and �x� an infinite cyclic subgroup such that ax = a1+p
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efficients Theorem that the cohomology group H2(Q, D) is isomorphic to the
homomorphism group Hom(M(Q), D), where M(Q) is the Schur multiplier of Q
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∧
Q of Q). Let δ be an element of in-

finite order of Hom(M(Q), D), and for all subgroups E < D and R < Q denote
by δE and δR the homomorphisms naturally induced by δ from M(Q) to D/E
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Theorem 25. (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi [14])
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All groups in this paper are finite. We will consider only graphs which are
undirected, simple (that is, with no parallel edges), and without loops. These
graphs will be characterised by the set of vertices and the adjacency relation
between the vertices. Only basic concepts about graphs will be needed for
this paper. They can be found in any book about graph theory or discrete
mathematics, for example [12].

Given a group G, there are many ways to associate a graph with G by
taking families of elements or subgroups as vertices and letting two vertices be
joined by an edge if and only if they satisfy a certain relation. We may ask
about characterising group structural properties by means of the properties of
the associated graph. In recent years, there has been considerable interest in
this line of research (see [1, 2, 3, 5, 7, 10]).

If X is a class of groups, Delizia, Moravec, and Nicotera [10] associate a
graph ΓX(G) with a group G by taking the nontrivial elements of G as vertices
and letting a, b ∈ G\{1} be joined by an edge if �a, b� ∈ X. If we choose
X = A, where A is the class of all abelian groups, then the graph is just the
commuting graph of G and so we may think of this graph as a generalisation of
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the commuting graph. This graph has been used to study simple groups since
the paper of Stellmacher [18].

For an arbitrary class, the graph considered by Delizia, Moravec, and Nico-
tera is too general to give much information and so we restrict the classes we
consider. We suppose that our class X is subgroup closed and contains A.

Delizia, Moravec, and Nicotera restrict their attention to groups which are
X-transitive. A group G is said to be X-transitive, or an XT -group, if whenever
�a, b� ∈ X and �b, c� ∈ X, then �a, c� ∈ X (a, b, c ∈ G). Note that the A-
transitive groups are just the CT -groups, or groups in which the centraliser of
any non-identity element is an abelian subgroup. CT -groups are of historical
importance as an early example of the type of classification that would be
used in the FeitThompson theorem and the classification of simple groups and
were classified by several mathematicians (Weisner [20], Suzuki [19], Wu [23]).
Characterisations of XT -groups are known for several classes of groups (see [11]
for a survey).

Let G be an XT -group. If C is a connected component of ΓX(G), then C
is a complete graph, C ∪ {1} is a subgroup of G and {C ∪ {1} : C a connected
component of ΓX(G)} is a partition of G ([17] p.145). As a consequence of the
classification of groups with a partition (see for example [17, Theorems 3.5.10
and 3.5.1]) we have the following result.

Theorem 1. Let G be an XT -group.

(1) The connected components of ΓX(G) form a normal partition of G\{1},
that is, conjugates of connected components are again connected compo-
nents.

(2) Either ΓX(G) is connected or G is one of the following groups: a Frobenius
group, PSL(2, 2h), Sz(2h) (a Suzuki group, h = 2k + 1 > 1).

Note that a group in the partition has the property that every 2-generator
subgroup is an X-group. In general this will not ensure that the group is an
X-group. For instance, N2, the class of (finite) nilpotent groups of class at most
2, is an example, since the free group of exponent 3 on 3 generators has class
3, but every 2-generator subgroup has class at most 2 (see [16]). A class X of
groups has been called 2-recognisable (2-erkennbar) by Brandl [9] if a group G
is in X if and only if every 2-generator subgroup of G is in X.

Observe that G is an XT -group and ΓX(G) is connected, then every 2-
generator subgroup of G is an X-group and so if X is 2-recognisable then G ∈ X.

Many classes of groups are known to be 2-recognisable; abelian, nilpotent,
supersoluble and soluble among them. Some of the classes of supersoluble
groups that have been extensively investigated in recent years are 2-recognisable.
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We consider here the following classes: the class T of soluble T -groups (solu-
ble groups in which normality is transitive), the class PT of soluble PT -groups
(soluble groups in which permutability is transitive) and the class PST of sol-
uble PST -groups (soluble groups in which Sylow permutability is transitive).
That each of these classes is subgroup closed, it is contained in the class of all
supersoluble groups and contains all abelian groups is well known (a description
of these classes and their properties can be found in [6]).

Lemma 2. The classes T, PT, and PST are all 2-recognisable.

We now define D to be the class of groups G with all Sylow subgroups cyclic
(these are just the groups with a cyclic normal subgroup whose quotient is cyclic
and whose order and index are coprime, see [24, Theorem V.3.11]). We then
define FX to be the class of Frobenius groups with the property that the kernel
K is an X-group, G/K ∈ D and for each prime p | |G/K| and each prime q | |K|,
p does not divide q − 1.

Theorem 3. Let X be a 2-recognisable class of soluble groups containing
A ∪ D. Then the class of all XT -groups is contained in X ∪ FX.

Theorem 4. Let X be a 2-recognisable class of soluble groups containing
A ∪ D and G be an XT -group.

(1) G ∈ X if and only if ΓX(G) is connected.

(2) G �∈ X if and only if G is a Frobenius group and K\{1} is a connected
component of ΓX(G) (where K is the kernel of G).

Bearing in mind the above results, it is natural to ask for the smallest 2-
recognisable class of groups containing A ∪ D.

Proposition 5. Let T0 be the class of T-groups G with G/G′ cyclic or G
abelian. Then T0 is the smallest 2-recognisable class of groups containing A∪D.

The following variation of the commuting graph gives a characterisation for
the groups in which all subgroups are permutable. We will call it the graph
of permutability of cyclic subgroups (see [4]). Given a group G, consider the
graph in which the vertices are the cyclic subgroups of G and in which every
two vertices are adjacent when they permute. A group has all subgroups per-
mutable if and only if the graph of permutability of cyclic subgroups is complete.
A related graph whose vertices are the non-normal subgroups was studied by
Bianchi, Gillio, and Verardi (see [7, 8, 13]).

The prime graph of a group has also attracted the attention of many re-
searchers. The vertices of this graph are the prime numbers dividing the order
of the group G and two different vertices p and q are connected if and only
if G has an element of order pq. For instance, in the cyclic group of order 6,
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the commuting graph. This graph has been used to study simple groups since
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this graph is complete, but in the symmetric group of degree 3, this graph con-
sists of two isolated vertices. The first references known to the authors of this
graph correspond to Gruenberg and Kegel, in an unpublished manuscript, and
to Williams, who studied the number of connected components of the prime
graph of a finite group (see [14, 21, 22]). Abe and Iiyori studied in [2] a general-
isation of the prime graph in the following way: given a group G, they construct
the graph ΓG whose vertices are the prime numbers dividing the order of G and
in which given two different vertices p and q, they are adjacent if and only if G
possesses a soluble group of order divisible by pq. Abe and Iiyori [2] proved:

Theorem 6. If G is a non-abelian simple group, then ΓG is connected, but
not complete.

Herzog, Longobardi, and Maj [15] have considered the graph whose vertices
are the non-trivial conjugacy classes of a group G and in which two non-trivial
conjugacy classes C and D of G are adjacent if and only if there exists c ∈ C
and d ∈ D such that cd = dc. They show that if G is a soluble group, then
this graph has at most two connected components, each of diameter at most 15.
They also study the structure of the groups for which there exist no edges
between non-central conjugacy classes and the relation between this graph and
the prime graph.

In [5] (see also [4]), the authors define for a group G a graph Γ(G) whose
vertices are the conjugacy classes of cyclic subgroups of G and in which two
vertices ClG(�x�) and ClG(�y�) are adjacent if and only if we can find an element
g ∈ G such that �x� permutes with �yg�. The main result of [5] is:

Theorem 7. A group G is a soluble PT-group if and only if the graph Γ(G)
is complete.

Acknowledgements

The first author and third author have been supported by the research grant
MTM2010-19938-C03-01 from MICINN (Spain).

References

[1] A. Abdollahi, S. Akbari, and H. R. Maimani. Non-commuting graph of a group. J.
Algebra, 298(2):468–492, 2006.

[2] S. Abe and N. Iiyori. A generalization of prime graphs of finite groups. Hokkaido Math.
J., 29(2):391–407, 2000.

[3] A. Ballester-Bolinches and J. Cossey. Graphs, partitions and classes of groups. Monatsh.
Math., 166:309–318, 2012.

92

[4] A. Ballester-Bolinches, J. Cossey, and R. Esteban-Romero. A characterization via graphs
of the soluble groups in which permutability is transitive. Algebra Discrete Math., 4:10–17,
2009.

[5] A. Ballester-Bolinches, J. Cossey, and R. Esteban-Romero. On a graph related to per-
mutability in finite groups. Ann. Mat. Pura Appl., 189(4):567–570, 2010.

[6] A. Ballester-Bolinches, R. Esteban-Romero, and M. Asaad. Products of finite groups,
volume 53 of de Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, 2010.

[7] M Bianchi, A. Gillio, and L. Verardi. Subgroup-permutability and affine planes. Geome-
triae Dedicata, 85:147–155, 2001.

[8] M. Bianchi, A. Gillio Berta Mauri, and L. Verardi. Finite groups and subgroup-
permutability. Ann. Mat. Pura Appl., IV. Ser., 169:251–268, 1995.

[9] R. Brandl. Zur Theorie der untergruppenabgeschlossenen Formationen: Endlichen Va-
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Let G = Gal(E/K), G′ = Gal(E/L), and X = G/G′ = { aG′ : a ∈ G } be
the space of left coset.

Then there is a bijection between

(1) Hopf Galois structures on L/K, and

(2) regular subgroups N of Sym(X) normalized by λ(G).

Here λ : G → Sym(X) is the usual action of G on the left cosets:

g �→ (aG′ �→ gaG′).

It might be remarked that in this context the only Hopf algebras that occur are
the group algebras EN .

Byott [1] was able to rephrase and refine Theorem 1.

Theorem 2 (Byott). Let G′ ≤ G be finite groups, X = G/G′, and N a
group of order |X|. There is a correspondence between

(1) injective morphisms α : N → Sym(X) such that α(N) is regular, and

(2) injective morphisms β : G → Sym(N) such that β(G′) is the stabilizer of
the identity of N .

Here α1(N) = α2(N) if and only if β1(G) and β2(G) are conjugate under
Aut(N). Moreover α(N) is normalized by λ(G) if and only if β(G) ≤ Hol(N).

These results can be summed up as follows.

Theorem 3. Let L/K be a separable field extension with normal closure E.
Let G = Gal(E/K), G′ = Gal(E/L). Let S be the set of isomorphism classes
of groups N of order |G/G′|.

Then the number of Hopf Galois structures on L/K is

∑

N∈S

e(G, N),

where e(G, N) is the number of equivalence classes, modulo conjugation under
Aut(N), of regular embeddings β : G → Hol(N) such that β(G′) is the stabilizer
of the identity of N .

The main goal of [5] is to prove the following vanishing result for the sum-
mand e(G, N) in Theorem 3.

Theorem 4. Suppose G and N are non-isomorphic abelian p-groups, where
N has rank m, and p > m + 1.

Then
e(G, N) = 0,
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that is, all abelian regular subgroups of Hol(N) are isomorphic to N .
It follows that if L/K is a Galois extension of fields with abelian Galois group

G, and if L/K is H-Hopf Galois, where the K-Hopf algebra H has associated
group N , then N is isomorphic to G.

2 Regular abelian subgroups

The key to our proof is the following result of [2].

Theorem 5. Let F be an arbitrary field, and (V, +) a vector space of arbi-
trary dimension over F .

There is a one-to-one correspondence between

(1) abelian regular subgroups T of AGL(V ), and

(2) commutative, associative F -algebra structures (V, +, ·) that one can impose
on the vector space structure (V, +), such that the resulting ring is radical.

In this correspondence, isomorphism classes of F -algebras correspond to conju-
gacy classes under the action of GL(V ) of abelian regular subgroups of AGL(V ).

Now AGL(V ) is the split extension of V by GL(V ). This acts naturally on
V . The above result holds verbatim if one replaces V by any abelian group N ,
and AGL(V ) by the holomorph Hol(N) of N , that is the split extension of N
by Aut(N). This also acts naturally on N . Thus we have

Theorem 6. Let (N,+) be an abelian group.
There is a one-to-one correspondence between

(1) abelian regular subgroups T of Hol(N), and

(2) commutative, associative ring structures (N,+, ·) that one can impose on
the abelian group structure (N,+), such that the resulting ring is radical.

In this correspondence, isomorphism classes of rings correspond to conjugacy
classes under the action of Aut(N) of abelian regular subgroups of Hol(N).

Note how the equivalence classes fit perfectly with those of Theorem 2,
involved in counting Hopf Galois structures.

3 An elementary result

Let p be a prime. Let (N, +) be an elementary abelian group of order pm.
Let (N, +, ·) be a commutative, associative, nilpotent ring based on the group
(N,+). Then (N, ◦) is also a group, where

u ◦ v = u + v + u · v.
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It follows that if L/K is a Galois extension of fields with abelian Galois group

G, and if L/K is H-Hopf Galois, where the K-Hopf algebra H has associated
group N , then N is isomorphic to G.

2 Regular abelian subgroups

The key to our proof is the following result of [2].

Theorem 5. Let F be an arbitrary field, and (V, +) a vector space of arbi-
trary dimension over F .

There is a one-to-one correspondence between

(1) abelian regular subgroups T of AGL(V ), and

(2) commutative, associative F -algebra structures (V, +, ·) that one can impose
on the vector space structure (V, +), such that the resulting ring is radical.

In this correspondence, isomorphism classes of F -algebras correspond to conju-
gacy classes under the action of GL(V ) of abelian regular subgroups of AGL(V ).

Now AGL(V ) is the split extension of V by GL(V ). This acts naturally on
V . The above result holds verbatim if one replaces V by any abelian group N ,
and AGL(V ) by the holomorph Hol(N) of N , that is the split extension of N
by Aut(N). This also acts naturally on N . Thus we have

Theorem 6. Let (N,+) be an abelian group.
There is a one-to-one correspondence between

(1) abelian regular subgroups T of Hol(N), and

(2) commutative, associative ring structures (N,+, ·) that one can impose on
the abelian group structure (N,+), such that the resulting ring is radical.

In this correspondence, isomorphism classes of rings correspond to conjugacy
classes under the action of Aut(N) of abelian regular subgroups of Hol(N).

Note how the equivalence classes fit perfectly with those of Theorem 2,
involved in counting Hopf Galois structures.

3 An elementary result

Let p be a prime. Let (N, +) be an elementary abelian group of order pm.
Let (N, +, ·) be a commutative, associative, nilpotent ring based on the group
(N,+). Then (N, ◦) is also a group, where

u ◦ v = u + v + u · v.
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Because of the result above, each regular subgroup G of Hol(N) is isomorphic
to such a (N, ◦).

We begin with

Lemma 1. If (N,+) is elementary abelian of order pm, with p > m, then
(N, ◦) is also elementary abelian.

Note that this is simply stating the obvious fact that a p-element of GL(m, p),
with m < p, has order p. However, we are using this simple instance as a first
illustration of the way we are using Theorem 6 in the proof of Theorem 4.

We will be using repeatedly the simple relation

p◦a =

p∑

i=1

(
p

i

)
ai

= pa +

p−1∑

i=2

(
p

i

)
ai + ap,

where we use the notation k◦a = a ◦ · · · ◦ a︸ ︷︷ ︸
k times

.

Proof of Lemma 1. (N,+, ·) is a nilpotent ring of order pm. p ≥ m + 1. Thus
Np ⊆ Nm+1 = { 0 }. It follows that ap = 0 for a ∈ N . Now

p◦a =

p−1∑

i=1

(
p

i

)
ai + ap

implies that (N, ◦) is also elementary abelian. QED

4 Two examples

In constructing examples, the idea is to start with a suitable ring. Let F be
the field with p elements, p a prime. Consider the ring of order pp

(N,+, ·) = xF [x]/xp+1F [x],

where F [x] is the ring of polynomials in the indeterminate x. Now (N, ◦) is
(isomorphic to) a regular abelian subgroup of Hol(N, +), where u◦v = u+v+u·v.
Let a be the image of x in the ring N . Then

p◦a =

p−1∑

i=1

(
p

i

)
ai + ap = ap �= 0,
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so that (N, ◦) has exponent (at least) p2. (It would be easy to see that (N, ◦)
has type (p2, p, . . . , p).)

This shows that the result of Lemma 1 is sharp.
For a “converse”, start with the ring xZ[x]/xp+1Z[x], where p is a prime.

Consider the quotient ring (N, +, ·) of it modulo the ideal spanned by the image
of px + xp. Write a for the image of x in N . Then N has order pp,

pa + ap = 0, pai = 0, for i > 1,

and (N, +) has m = p − 1 generators a, a2, . . . , ap−1, and type (p2, p, . . . , p).
Then there is an abelian regular subgroup of Hol(N, +) which is isomorphic to
(N, ◦). In (N, ◦) we have p◦a

i = 0 for i > 1, and

p◦a = pa +

p−1∑

i=2

(
p

i

)
ai + ap = pa + ap = 0,

so that (N, ◦) is elementary abelian.
In this example, m = p + 1, and the conclusion of Theorem 4 fails. This

shows that the result of Theorem 4 is sharp.

5 Proof of Theorem 4

Because of the correspondence established in Theorem 6, we have to prove
that, under the assumptions of Theorem 4, if (N, +, ·) is any associative, nilpo-
tent ring, then (N, +) and (N, ◦) are isomorphic.

We will show that the two finite abelian groups (N, +) and (N, ◦) have the
same number of elements of each order, from which isomorphism follows.

Consider the subgroups of (N, +)

Ωi(N,+) =
{

x ∈ N : pix = 0
}

.

These are ideals of (N, +, ·), so that they are also subgroups of (N, ◦), as x◦y =
x + y + x · y. We want to show that for each i the following equalities hold

Ωi+1(N,+) \ Ωi(N,+) = Ωi+1(N, ◦) \ Ωi(N, ◦) (5.1)

between the set of elements of order pi+1 in (N, +), respectively (N, ◦).
However, we only need to prove the inequalities

Ωi+1(N,+) \ Ωi(N,+) ⊆ Ωi+1(N, ◦) \ Ωi(N, ◦). (5.2)

In fact, suppose all of the (5.2) hold. If this is the case, note that N is the
disjoint union of the left-hand terms of (5.2) (plus { 0 }). Since N is finite, it
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follows that all inequalities in (5.2) are equalities, that is, all of the (5.1) also
hold.

Consider the sections of the group (N, +)

Si = Ωi+1(N,+)/Ωi−1(N,+),

for 1 ≤ i < e, where pe is the exponent of (N, +). These sections have exponent
p2 as groups with respect to +. Note that these are also sections of the ring
(N,+, ·) and of the group (N, ◦).

We will now prove the following

Lemma 2. The orders of the elements of each Si are the same with respect
to + and ◦.

From this the inequalities (5.2) will follow, and thus the main result. In
fact, the cases i = 0, 1 of (5.2) are taken care directly by the Lemma for i = 1,
as in this case S = Ω2(N,+). Proceeding by induction, if a ∈ Ωi+1(N,+) \
Ωi(N,+), the Lemma states that p◦a ∈ Ωi(N,+)\Ωi−1(N,+). By the inductive
hypothesis, this is contained in Ωi(N, ◦) \ Ωi−1(N, ◦), so that a ∈ Ωi+1(N, ◦) \
Ωi(N, ◦).

Proof of Lemma 2. Clearly T = Ω1(S, +) = Ωi(N,+)/Ωi−1(N,+), and pS ⊆ T .
Consider first an element 0 �= a ∈ T , so that a has order p with respect

to +. We want to show that a has order p also with respect to ◦. Since T
is an elementary abelian section of (N, +), it has order at most pm. Since
p > m + 1 > m, Lemma 1 implies that (T, ◦) is also elementary abelian.

Suppose now a ∈ S \ T , so that a has order p2 with respect to +. We want
to show that a has order p2 also with respect to ◦.

Note that (S/T, +) is an elementary abelian section of (N, +), and thus
S/T has order at most pm. Now (S/T,+, ·) is a nilpotent ring of order at most
pm < pp, so that Sp ⊆ Sm+1 ⊆ T . Using this, and the fact that pS ⊆ T , in the
formula

p◦a =

p−1∑

i=1

(
p

i

)
ai + ap,

we obtain that p◦a ∈ T , and so a has order at most p2 with respect to ◦.
We will now show that p◦a �= 0, so that a will have order exactly p2 also

with respect to ◦. Since we are only working in the subring of S spanned by a,
we redefine S to be just that. If pa /∈ S2, then it is clear from

p◦a = pa +

p∑

i=2

(
p

i

)
ai

that p◦a ≡ pa �≡ 0 modulo S2, so that p◦a �= 0, and we are done.
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So assume pa ∈ S2, and let k ≥ 2 be such that pa ∈ Sk \ Sk+1. Since
S is generated by a, we will have pS ⊆ Sk. This means that (S/Sk, +) is
elementary abelian. Now Sk �= { 0 }, as it contains pa �= 0. Thus in the
nilpotent ring S we have the proper inclusions S ⊃ S2 ⊃ · · · ⊃ Sk ⊃ { 0 }.
It follows that the elementary abelian section (S/Sk, +) of (N, +) has a basis
given by a, a2, . . . , ak−1, so that it has order pk−1, and thus k − 1 ≤ m.

Consider once more

p◦a = pa +

p−1∑

i=2

(
p

i

)
ai + ap.

Since pa ∈ Sk, for 2 ≤ i ≤ p − 1 we have

(
p

i

)
ai ∈ SkS = Sk+1.

Since p ≥ m + 2 ≥ k + 1, we have also ap ∈ Sp ⊆ Sk+1. Now the formula above
yields p◦a ≡ pa �≡ 0 modulo Sk+1, so that p◦a �= 0, and we are done. QED
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formations, particularly where the fT -groups are the T -, PT -, and PST -groups.

Keywords: T -groups, formations

MSC 2000 classification: 20D99

This paper includes work done with A. Ballester-Bolinches, M.C. Pedraza-
Aguilera, M. Ragland, and J. Beidleman. See [1] for results on the situation in
which f(G) is the set of normal subgroups of G and [2] for results about T -,
PT -, and PST -groups.

All groups treated are finite.

Definitions

A subgroup H is subnormal in G if H = G or there exists a chain of sub-
groups H = H0 < H1 < H2 < ... < Hk = G such that Hi−1 is normal in Hi for
1 ≤ i ≤ k. Clearly subnormality is transitive: If H is subnormal in J and J is
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We assume f contains n, where n(G) is the set of normal subgroups of G,
and is contained in pS, where pS(G) is the set of Sylow permutable subgroups
of G – these are the subgroups H of G such that HP = PH for every Sylow
subgroup P of G.

Let p(G) be the set of permutable subgroups of G, i.e. those subgroups H
such that HK = KH for all subgroups K of G.

We define fW to be the class of groups such that H ≤ G implies H f G,
and fT to be the class of groups such that H sn G implies H f G. Thus fT
contains fW .

If f = n, then nW is the class of Dedekind groups, i.e. the groups such that
all subgroups are normal, while nT is the class of T -groups, the groups in which
every subnormal subgroup is normal. Hence the (n)T -groups are those in which
normality is transitive.

If f = p, then pW is the class of Iwasawa groups, i.e. the groups such that
all subgroups are permutable, while pT is the class of PT -groups, the groups
in which every subnormal subgroup is permutable. Because normal implies
permutable implies subnormal, the PT -groups are those in which permutability
is transitive.

If f = pS, then pSW is the class of nilpotent groups, while pST is the
class of PST -groups, the groups in which every subnormal subgroup is Sylow
permutable. Because normal implies Sylow permutable implies subnormal, the
PST -groups are those in which Sylow permutability is transitive.

The nilpotent residual of a group G is the unique smallest normal subgroup
X of G such that the quotient group G/X is nilpotent. This nilpotent residual is
denoted GN; here N denotes the class of finite nilpotent groups. (This residual
exists because if X and Y are normal subgroups of G such that G/X and G/Y
are nilpotent, then G/X ∩ Y is nilpotent, also.)

Theorem 1. (Gaschütz, Zacher, Agrawal) [2] If f = n, p, or pS, then G
is a finite soluble fT -group if and only if GN is abelian of odd order; GN and
G/GN are of relatively prime order; G/GN ∈ fW ; and every subgroup of GN is
normal in G.

H is pronormal in G if for each g ∈ G, H and its conjugate Hg are conjugate
in the join < H, Hg >, i.e Hg = Hx, where x ∈< H, Hg >.

It is also possible to show that H is pronormal in G if and only if for each
g ∈ G, H and Hg are conjugate via an element of < H, Hg >N.

Examples:

Sylow p-subgroups are pronormal; so are maximal subgroups.

A subgroup that is both subnormal and pronormal is normal.

A formation F is a class of groups such that:

(1) If G ∈ F and X is a normal subgroup of G, then G/X ∈ F.
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(2) If G/X, G/Y ∈ F for X and Y normal subgroups in G, then G/X ∩Y ∈
F.

Here (2) is the property of N guaranteeing the existence of the N-residual
GN. We can define GF similarly.

Let F be a formation of finite groups containing all nilpotent groups such
that any normal subgroup of any fT -group in F and any subgroup of any soluble
fT -group in F belongs to F. We say such an F has Property f∗.

A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M)
belongs to F. A subgroup U of a finite group G is called a K-F-subnormal
subgroup of G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ · · · ≤
Un = G such that Ui−1 is either normal or F-normal in Ui, for i = 1, 2, . . . , n.

We call a finite group G an fTF-group if every K-F-subnormal subgroup of
G is in f(G). When F = N, the fTN-groups are precisely the fT -groups. (This
is because an N-normal subgroup is subnormal, so K-N-subnormal is the same
as subnormal.)

H is F-pronormal in G if for each g ∈ G, H and Hg are conjugate via an
element of < H, Hg >F.

Just as K-N-subnormality is the same as subnormality, N-pronormality is
the same as pronormality.

Results

Theorem 2. [3] If F is a subgroup-closed saturated formation containing
N, a soluble group is in F if and only if each of its subgroups is F-subnormal.
(This generalises the well known fact for N.)

If F1 ⊇ F2, every K-F2-subnormal subgroup is K-F1-subnormal, and every
F1-pronormal subgroup is F2-pronormal.

Thus all our fTF-groups are fT -groups, because K-N-subnormal subgroups
are K-F-subnormal.

Theorem 3. [3] If F is a subgroup-closed saturated formation containing
N, then a soluble group is a TF-group if and only if each of its subgroups is
F-pronormal.

If F contains N, then G ∈ F is a TF-group if and only if G is Dedekind.

Theorem 4. If F contains U, the formation of supersoluble groups, then the
soluble TF-groups are just the Dedekind groups.

Proof. Each soluble TF-group, being a soluble T -group, is in U, which is
contained in F. Thus by Theorem 3, such a group is Dedekind.

Let O be the set of ordered pairs (p, q) where p and q are prime numbers
such that q divides p − 1, and for (p, q) in O, denote by X(p,q) a non-abelian
group of order pq.
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Abstract. We give a short introduction to the subject of representation growth and rep-
resentation zeta functions of groups, omitting all proofs. Our focus is on results which are
relevant to the study of arithmetic groups in semisimple algebraic groups, such as the group
SLn(Z) consisting of n×n integer matrices of determinant 1. In the last two sections we state
several results which were recently obtained in joint work with N. Avni, U. Onn and C. Voll.
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1 Introduction

Let G be a group. For n ∈ N, let rn(G) denote the number of isomorphism
classes of n-dimensional irreducible complex representations of G. We suppose
that G is representation rigid, i.e., that rn(G) < ∞ for all positive integers n.

If the group G is finite then G is automatically representation rigid and the
sequence rn(G) has only finitely many non-zero terms, capturing the distribu-
tion of irreducible character degrees of G. The study of finite groups by means
of their irreducible character degrees and conjugacy classes is a well established
research area; e.g., see [10] and references therein. Interesting asymptotic phe-
nomena are known to occur when one considers the irreducible character degrees
of suitable infinite families of finite groups, for instance, families of finite groups
H of Lie type as |H| tends to infinity; see [14].

In the present survey we are primarily interested in the situation where G is
infinite, albeit G may sometimes arise as an inverse limit of finite groups. Two
fundamental questions in this case are: what are the arithmetic properties of
the sequence rn(G), n ∈ N, and what is the asymptotic behaviour of RN (G) =∑N

n=1 rn(G) as N tends to infinity? To a certain degree this line of investigation
is inspired by the subject of subgroup growth and subgroup zeta functions which,

iThis survey reports on work which was partially supported by the following institutions:
the Batsheva de Rothschild Fund, the EPSRC, the Mathematisches Forschungsinstitut Ober-
wolfach, the NSF and the Nuffield Foundation.

http://siba-ese.unisalento.it/ c� 2013 Università del Salento

Let X be the class consisting of every group that is isomorphic to X(p,q) for
some (p, q) ∈ O and denote by XF the class X ∩ F.

Let Y be the class of non-abelian simple groups, and let YF be the class
Y ∩ F, and denote by S the class of finite soluble groups.

Definition.

A group G is said to be an fRF-group if G is an fT -group and
[i] No section of G/GS is isomorphic to an element of XF.
[ii] No chief factor of GS is isomorphic to an element of YF.

Theorem 5. If G is a group and F has Property f∗, then G ∈ fTF if and
only if G ∈ fRF.

Theorem 6. Let G be a group and F be a formation containing N. If G
is a soluble fTF-group then Conditions (i), (ii), and (iii) below hold, and if (i),
(ii) and (iii) hold and S ∩ F has Property f∗ where f = n, p, or pS, then G is
a soluble fTF-group.

[i] GF is a normal abelian Hall subgroup of G with odd order;
[ii] X/XF is an fW -group for every X sn G;
[iii] Every subgroup of GF is normal in G.

Definition. he(G) is the set of hypercentrally embeddded subgroups of G,
i.e. the set of subgroups H such that H/HG ≤ Z∞(G/HG), the hypercentre of
G/HG.

Lemma 1. For all G, p(G) is contained in he(G), which is contained in
pS(G). However, these subgroup embedding functors are all distinct.

Theorem 7. If F is a formation, then S ∩ F satisfies pS∗ if and only if it
satisfies he∗. If G is a soluble group and S ∩ F possesses this property, then
G ∈ pSTF if and only if G ∈ heTF.

Thus it is possible for distinct functors f and g to yield the same generali-
sations fTF and gTF, leading to the following:

Question. What other possibilities for f lead to new fT and fW and
therefore potentially new fTF?

References

[1] A. Ballester-Bolinches, A.D. Feldman, M.C. Pedraza-Aguilera, and M. F.

Ragland: A class of generalised finite T-groups, J. Algebra, 333, n. 1, 128–138, 2011.

[2] A. Ballester-Bolinches, R. Esteban-Romero, and M. Asaad: Products of finite
groups, de Gruyter Expositions in Mathematics, 53, Berlin 2010.

[3] A. D. Feldman: t-groups and their generalizations, Group theory (Granville, OH, 1992),
World Scientific, 128–133, 1993.

106



Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 33 (2013) no. 1, 107–120. doi:10.1285/i15900932v33n1p107

Representation growth and representation

zeta functions of groups

Benjamin Klopschi

Department of Mathematics, Royal Holloway University of London
benjamin.klopsch@rhul.ac.uk

Abstract. We give a short introduction to the subject of representation growth and rep-
resentation zeta functions of groups, omitting all proofs. Our focus is on results which are
relevant to the study of arithmetic groups in semisimple algebraic groups, such as the group
SLn(Z) consisting of n×n integer matrices of determinant 1. In the last two sections we state
several results which were recently obtained in joint work with N. Avni, U. Onn and C. Voll.

Keywords: Representations, characters, arithmetic groups, p-adic Lie groups, zeta functions.

MSC 2000 classification: primary 22E55, secondary 22E50, 20F69

1 Introduction

Let G be a group. For n ∈ N, let rn(G) denote the number of isomorphism
classes of n-dimensional irreducible complex representations of G. We suppose
that G is representation rigid, i.e., that rn(G) < ∞ for all positive integers n.

If the group G is finite then G is automatically representation rigid and the
sequence rn(G) has only finitely many non-zero terms, capturing the distribu-
tion of irreducible character degrees of G. The study of finite groups by means
of their irreducible character degrees and conjugacy classes is a well established
research area; e.g., see [10] and references therein. Interesting asymptotic phe-
nomena are known to occur when one considers the irreducible character degrees
of suitable infinite families of finite groups, for instance, families of finite groups
H of Lie type as |H| tends to infinity; see [14].

In the present survey we are primarily interested in the situation where G is
infinite, albeit G may sometimes arise as an inverse limit of finite groups. Two
fundamental questions in this case are: what are the arithmetic properties of
the sequence rn(G), n ∈ N, and what is the asymptotic behaviour of RN (G) =∑N

n=1 rn(G) as N tends to infinity? To a certain degree this line of investigation
is inspired by the subject of subgroup growth and subgroup zeta functions which,

iThis survey reports on work which was partially supported by the following institutions:
the Batsheva de Rothschild Fund, the EPSRC, the Mathematisches Forschungsinstitut Ober-
wolfach, the NSF and the Nuffield Foundation.

http://siba-ese.unisalento.it/ c� 2013 Università del Salento
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Theorem 1 (Liebeck and Shalev). Let L be a fixed Lie type and let h be
the Coxeter number of the corresponding simple algebraic group G, i.e., h+1 =
dimG/rkG. Then for the finite quasi-simple groups L(q) of type L over Fq,

ζL(q)(s) →
{

1 for s ∈ R>2/h

∞ for s ∈ R<2/h

as q → ∞.

The Coxeter number h is computed easily. For example, for G = SLn and
L(q) = SLn(Fq) one has h = n. In the smallest interesting case n = 2 and for
odd q, the zeta function of SL2(Fq) is

ζSL2(Fq)(s) = 1+q−s + q−3
2 (q+1)−s + q−1

2 (q−1)−s +2( q+1
2 )−s +2( q−1

2 )−s, (2.2)

which is approximately the expression in (2.1) divided by (q − 1). From the
explicit formula one can verify directly the assertion of Theorem 1 in this special
case.

3 Abscissa of convergence and polynomial represen-

tation growth

In Section 1 we introduced the zeta function ζG(s) of a representation rigid
group G as a formal Dirichlet series. Clearly, if G is finite – or more generally if G
has only finitely many irreducible complex representations – then the Dirichlet
polynomial ζG(s) defines an analytic function on the entire complex plane.

Now suppose that G is infinite and that rn(G) is non-zero for infinitely many
n ∈ N. Naturally, we are interested in the convergence properties of ζG(s) for
s ∈ C. The general theory of Dirichlet generating functions shows that the
region of convergence is always a right half plane of C, possibly empty, and that
the resulting function is analytic. If the region of convergence is non-empty, one
is also interested in meromorphic continuation of the function to a larger part
of the complex plane.

The abscissa of convergence α(G) of ζG(s) is the infimum of all α ∈ R such
that the series ζG(s) converges (to an analytic function) on the right half plane
{s ∈ C | Re(s) > α}. The abscissa α(G) is finite if and only if G has polynomial
representation growth, i.e., if RN (G) =

∑N
n=1 rn(G) grows at most polynomially

in N . In fact, if the growth sequence RN (G), N ∈ N, is unbounded then

α(G) = lim sup
N→∞

log RN (G)

log N

gives the polynomial degree of growth: RN (G) = O
(
Nα(G)+ε

)
for every ε > 0.
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in a similar way, is concerned with the distribution of finite index subgroups;
e.g., see [16, 8].

In order to streamline the investigation it is convenient to encode the arith-
metic sequence rn(G), n ∈ N, in a suitable generating function. The represen-
tation zeta function of G is the Dirichlet generating function

ζG(s) =
∞∑

n=1

rn(G)n−s (s ∈ C).

If the group G is such that there is a one-to-one correspondence between iso-
morphism classes of irreducible representations and irreducible characters then,
writing Irr(G) for the space of irreducible characters of G, we can express the
zeta function also in the suggestive and slightly more algebraic form

ζG(s) =
∑

χ∈Irr(G)

χ(1)−s (s ∈ C).

The function ζG(s) is a suitable vehicle for studying the distribution of
character degrees of the group G whenever the representation growth of G is
‘not too fast’, a condition which is made precise in Section 3. Groups which meet
this requirement include, for instance, arithmetic groups in semisimple algebraic
groups with the Congruence Subgroup Property and open compact subgroups of
semisimple p-adic Lie groups. In recent years, several substantial results have
been obtained concerning the representation growth and representation zeta
functions of these types of groups; see [12, 13, 2, 1, 3, 4, 5, 6]. In the present
survey we discuss some of these results and we indicate what kinds of methods
are involved in proving them.

2 Finite groups of Lie type

Our primary focus is on infinite groups, but it is instructive to briefly touch
upon representation zeta functions of finite groups of Lie type. For example,
the representation theory of the general linear group GL2(Fq) over a finite field
Fq is well understood and one deduces readily that

ζGL2(Fq)(s) = (q − 1)
(
1 + q−s + q−2

2 (q + 1)−s + q
2(q − 1)−s

)
. (2.1)

It is remarkable that the formula (2.1) is uniform in q in the sense that both the
irreducible character degrees and their multiplicities can be expressed in terms
of polynomials in q over the rational field Q. In general, Deligne-Lusztig theory
provides powerful and sophisticated tools to study the irreducible characters of
finite groups of Lie type. In [14], Liebeck and Shalev obtained, for instance, the
following general asymptotic result.
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2(q − 1)−s

)
. (2.1)

It is remarkable that the formula (2.1) is uniform in q in the sense that both the
irreducible character degrees and their multiplicities can be expressed in terms
of polynomials in q over the rational field Q. In general, Deligne-Lusztig theory
provides powerful and sophisticated tools to study the irreducible characters of
finite groups of Lie type. In [14], Liebeck and Shalev obtained, for instance, the
following general asymptotic result.
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5 The group SL2(R) for discrete valuation rings R

If G is a topological group it is natural to focus attention on continuous
representations. A finitely generated profinite group G is representation rigid
in this restricted sense if and only if it is FAb, i.e., if every open subgroup H of G
has finite abelianisation H/[H, H]. This is a consequence of Jordan’s theorem on
abelian normal subgroups of bounded index in finite linear groups. We tacitly
agree that the representation zeta function ζG(s) of a finitely generated FAb
profinite group G counts irreducible continuous complex representations of G.

Let R be a complete discrete valuation ring, with residue field Fq of odd
characteristic. This means that R is either a finite integral extension of the ring
of p-adic integers Zp for some prime p or a formal power series ring Fq[[t]] over
a finite field of cardinality q.

In [12], Jaikin-Zapirain showed by a hands-on computation of character
degrees that the representation zeta function ζSL2(R)(s) equals

ζSL2(Fq)(s) +

(
4q

(
q2−1

2

)−s
+ q2−1

2 (q2 − q)−s + (q−1)2

2 (q2 + q)−s

)
/(1 − q1−s),

where the Dirichlet polynomial ζSL2(Fq)(s) is described in (2.2). It is remarkable
that the above formula is uniform in q, irrespective of the characteristic, absolute
ramification index or isomorphism type of the ring R. In the case where R has
characteristic 0, Lie-theoretic techniques combined with Clifford theory can be
used to gain an insight into the features of this specific example which hold
more generally; see Sections 6 and 9.

Clearly, the explicit formula for the function ζSL2(R)(s) provides a meromor-
phic extension to the entire complex plane. The abscissa of convergence is 1
and, in view of Theorems 1 and 2, this value could be interpreted as 2/h, the
Coxeter number of SL2 being h = 2. But such an interpretation is misleading,
as can be seen from the following general result obtained in [13].

Theorem 3 (Larsen and Lubotzky). Let G be a simple algebraic group over
a non-archimedean local field F . Suppose that G is F -isotropic, i.e., rkFG ≥ 1.
Let H be a compact open subgroup of G(F ). Then α(H) ≥ 1/15.

Taking G = SLn and F = Qp, we may consider the compact p-adic Lie
groups SLn(Zp). For these groups 2/h = 2/n → 0 as n → ∞, whereas
α(SLn(Zp)) is uniformly bounded away from 0. Currently, the only explicit
values known for α(SLn(Zp)) are: 1 for n = 2 (as seen above), and 2/3 for
n = 3 (see [4]). Unfortunately, these do not yet indicate the general behaviour.
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Two fundamental problems in the subject are: to characterise groups of
polynomial representation growth – motivated by Gromow’s celebrated theorem
on groups of polynomial word growth – and to link the actual value of the
abscissa of convergence α(G) of a group G to structural properties of G. In
general these questions are still very much open. However, in the context of
semisimple algebraic groups and their arithmetic subgroups a range of results
have been obtained. A selection of these are discussed in the following sections.

4 Witten zeta functions

In [20], Witten initiated in the context of quantum gauge theories the study
of certain representation zeta functions. Let G be a connected, simply con-
nected, complex almost simple algebraic group and let G = G(C). It is natural
to focus on rational representations of the algebraic group G and one can show
that G is representation rigid in this restricted sense. The Witten zeta func-
tion ζG(s) counts irreducible rational representations of the complex algebraic
group G. These zeta functions also appear naturally as archimedean factors of
representation zeta functions of arithmetic groups, as explained in Section 8.

For example, the group SL2(C) has a unique irreducible representation of
each possible degree. Hence

ζSL2(C)(s) =
∞∑

n=1

n−s,

the famous Riemann zeta function. In particular, the abscissa of convergence
is 1 and there is a meromorphic continuation to the entire complex plane.

In general, the irreducible representations Vλ of G are parametrised by
their highest weights λ =

∑r
i=1 aiωi, where ω1, . . . , ωr denote the fundamen-

tal weights and the coefficients a1, . . . , ar range over all non-negative integers.
Moreover, dimVλ is given by the Weyl dimension formula. By a careful analysis,
Larsen and Lubotzky prove in [13] the following result.

Theorem 2 (Larsen and Lubotzky). Let G be a connected, simply con-
nected, complex almost simple algebraic group and let G = G(C). Then α(G) =
2/h, where h is the Coxeter number of G.

It is known that Witten zeta functions can be continued meromorphically to
the entire complex plane. Further analytic properties of these functions, such as
the location of singularities and functional relations, have been investigated in
some detail using multiple zeta functions; e.g., see [18, 11]. It is remarkable that
the same invariant 2/h features in Theorems 1 and 2. Currently there appears
to be no conceptual explanation for this.
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6 FAb compact p-adic Lie groups

Let G be a compact p-adic Lie group. Then one associates to G a Qp-
Lie algebra as follows. The group G contains a uniformly powerful open pro-p
subgroup U . By the theory of powerful pro-p groups, U gives rise to a Zp-Lie
lattice L = log(U) and the induced Qp-Lie algebra L(G) = Qp ⊗Zp

L does not
depend on the specific choice of U . It is a fact that G is FAb if and only if L(G)
is perfect, i.e., if [L(G),L(G)] = L(G). Conversely, for any Qp-Lie algebra L
one can easily produce compact p-adic Lie groups G such that L(G) = L, using
the exponential map. This supplies a large class of compact p-adic Lie groups
which are FAb and hence have polynomial representation growth.

Using the Kirillov orbit method and techniques from model theory, Jaikin-
Zapirain established in [12] that the representation zeta function of a FAb com-
pact p-adic analytic pro-p group can always be expressed as a rational function
in p−s over Q. More generally, he proved the following result, which is illustrated
by the explicit example G = SL2(R) given in Section 5.

Theorem 4 (Jaikin-Zapirain). Let G be an FAb compact p-adic Lie group,
and suppose that p > 2. Then there are finitely many positive integers n1, . . . , nk

and rational functions f1, . . . , fk ∈ Q(X) such that

ζG(s) =
k∑

i=1

fi(p
−s)n−s

i .

In particular, the theorem shows that the zeta function of a FAb compact
p-adic Lie group G extends meromorphically to the entire complex plane. The
invariant α(G) is the largest real part of a pole of ζG(s). It is natural to inves-
tigate the whole spectrum of poles and zeros of ζG(s).

Currently, very little is known about the location of the zeros of representa-
tion zeta functions. In 2010 Kurokawa and Kurokawa observed from the explicit
formula given in Section 5 that ζSL2(Zp)(s) = 0 for s ∈ {−1,−2}. We note that
if G is a finite group then ζG(−2) =

∑
χ∈Irr(G) χ(1)2 = |G|. Based on this fact

and the results in [12] one can prove the following general result.

Theorem 5 (Jaikin-Zapirain and Klopsch). Let G be an infinite FAb com-
pact p-adic Lie group and suppose that p > 2. Then ζG(−2) = 0.

7 Rational representations of the infinite cyclic group

Before considering arithmetic subgroups of semisimple algebraic groups, let
us look at representations of the simplest infinite group, i.e., the infinite cyclic
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group C∞. The group C∞ has already infinitely many 1-dimensional represen-
tations. Hence in order to say anything meaningful we need to slightly adapt
our basic definitions.

We make two modifications: firstly let us only consider representations with
finite image and secondly let us consider irreducible representations over Q
rather than C. More precisely, for any finitely generated nilpotent group Γ let
r̂Q
n (Γ) denote the number of n-dimensional irreducible representations of Γ over

Q with finite image. Then it turns out that r̂Q
n (Γ) is finite for every n ∈ N and

we can define the Q-rational representation zeta function

ζQ
Γ (s) =

∞∑

n=1

r̂Q
n (Γ)n−s.

Using that every finite nilpotent group is the direct product of its Sylow p-
subgroups and basic facts from character theory, one can show that ζQ

Γ (s) admits
an Euler product decomposition

ζQ
Γ (s) =

∏

p prime

ζQ
Γ,p(s), (7.1)

where for each prime p the local factor ζQ
Γ,p(s) =

∑∞
k=0 r̂Q

pk(Γ) p−ks, enumerating
irreducible representations of p-power dimension, can be re-interpreted as the
Q-rational representation zeta function of the pro-p completion Γ̂p of Γ. For
more details and deeper results in this direction we refer to the forthcoming
article [9].

Let us now return to the simplest case: Γ = C∞, the infinite cyclic group.
Since the group C∞ is abelian, its irreducible representations over Q with fi-
nite image can be effectively described by means of Galois orbits of irreducible
complex characters. In the general setting, one would also need to keep track
of Schur indices featuring in the computation of ζQ

Γ,2(s). A short analysis yields

ζQ
C∞

(s) =
∞∑

m=1

ϕ(m)−s,

where ϕ denotes Euler’s function familiar from elementary number theory.

The Dirichlet series ψ(s) =
∑∞

m=1 ϕ(m)−s is of independent interest in an-
alytic number theory and has been studied by many authors; e.g., see [7]. The
Euler product decomposition (7.1) can be established directly

ψ(s) =
∏

p prime

(
1 + (p − 1)−s/(1 − p−s)

)
.
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Theorem 6 (Lubotzky and Martin). Let Γ be an arithmetic group as above.
Then α(Γ) is finite if and only if Γ has the Congruence Subgroup Property.

The group Γ has the Congruence Subgroup Property (CSP) if, essentially,
all its finite index subgroups arise from the arithmetic structure of the group.

Technically, this means that the congruence kernel ker( �G(OS) → G(OS)) is

finite; here �G(OS) is the profinite completion and G(OS) ∼=
∏

p�∈S G(Op), with
p running over non-archimedean places, denotes the congruence completion of
G(OS). For instance, it was shown by Bass-Lazard-Serre and Mennicke that the
group SLn(Z) has the CSP if and only if n ≥ 3. That SL2(Z) does not have the
CSP was discovered by Fricke and Klein. Retrospectively this is not surprising,
because SL2(Z) contains a free subgroup of finite index. We refer to [19] for a
comprehensive survey of the Congruence Subgroup Problem, i.e., the problem
to decide precisely which arithmetic groups have the CSP.

Suppose that Γ has the CSP. Using Margulis’ super-rigidity theorem, Larsen
and Lubotzky derived in [13] an Euler product decomposition for ζΓ(s), which
takes a particularly simple form whenever the congruence kernel is trivial.

Theorem 7 (Larsen and Lubotzky). Let Γ be an arithmetic group as above
and suppose that Γ has the CSP. Then ζΓ(s) admits an Euler product decompo-
sition. In particular, if the congruence kernel for Γ = G(OS) is trivial then

ζΓ(s) = ζG(C)(s)
[k:Q]

∏

p �∈ S

ζG(Op)(s). (8.1)

For instance, for the groups SLn(Z), n ≥ 3, the Euler product takes the
form

ζSLn(Z)(s) = ζSLn(C)(s)
∏

p prime

ζSLn(Zp)(s).

In Sections 4 and 5 we already encountered individually the factors of these
Euler products: ζG(C)(s) is the Witten zeta function capturing rational repre-
sentations of the algebraic group G(C) and, for each p, the function ζG(Op)(s)
enumerates continuous representations of the compact p-adic Lie group G(Op).
Larsen and Lubotzky’s results for the abscissae of convergence of these local
zeta functions include Theorems 2 and 3 stated above.

Regarding the abscissa of convergence of the global representation zeta func-
tion, Avni employed in [1] model-theoretic techniques to prove that the ab-
scissa of convergence of ζΓ(s) is always a rational number. In [13], Larsen and
Lubotzky made the following conjecture, which can be regarded as a refinement
of Serre’s conjecture on the Congruence Subgroup Problem.

Conjecture 1 (Larsen and Lubotzky). Let G be a higher-rank semisimple
locally compact group. Then, for any two irreducible lattices Γ1 and Γ2 in G,
α(Γ1) = α(Γ2).
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The abscissa of convergence of ψ(s), which can be interpreted as the degree
αQ(C∞) of Q-rational representation growth, is equal to 1. In fact, writing

ψ(s) =
∏

p prime

(
1 + (p − 1)−s − p−s

)

︸ ︷︷ ︸
converges for Re(s) > 0

·
∏

p prime

(1 − p−s)−1

︸ ︷︷ ︸
Riemann zeta function ζ(s)

,

one sees that ψ(s) admits a meromorphic continuation to Re(s) > 0 (but not
to the entire complex plane) and has a simple pole at s = 1 with residue
c = ζ(2)ζ(3)/ζ(6) = 1.9435964 . . . This yields very precise asymptotics for the
Q-rational representation growth of C∞; in particular,

N∑

n=1

r̂Q
n (C∞) = #{m | ϕ(m) ≤ N} ∼ cN as N → ∞.

One may regard this simple case and its beautiful connections to classical an-
alytic number theory as a further motivation for studying representation zeta
functions of arithmetic groups.

8 Arithmetic lattices in semisimple groups

In this section we turn our attention to lattices in semisimple locally compact
groups. These lattices are discrete subgroups of finite co-volume and often, but
not always, have arithmetic origin. For instance, SLn(Z) is an arithmetic lattice
in the real Lie group SLn(R). More generally, let Γ be an arithmetic irreducible
lattice in a semisimple locally compact group G of characteristic 0. Then Γ is
commensurable to G(OS), where G is a connected, simply connected absolutely
almost simple algebraic group defined over a number field k and OS is the ring of
S-integers for a finite set S of places of k. By a theorem going back to Borel and
Harish-Chandra, any such G(OS) forms an irreducible lattice in the semisimple
locally compact group G =

∏
℘∈S G(k℘) under the diagonal embedding, as long

as S is non-empty and contains all archimedean places ℘ such that G(k℘) is
non-compact. Examples of this construction are SLn(Z[

√
2]) ⊆ SLn(R)×SLn(R)

and SLn(Z[1/p]) ⊆ SLn(R) × SLn(Qp). Margulis has shown that in the higher
rank situation all irreducible lattices are arithmetic and arise in this way. For
precise notions and a more complete description see [17].

Throughout the following we assume, for simplicity of notation, that Γ =
G(OS) as above. In [15], Lubotzky and Martin gave a characterisation of arith-
metic groups of polynomial representation growth, linking them to the classical
Congruence Subgroup Problem.
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Conjecture 1 (Larsen and Lubotzky). Let G be a higher-rank semisimple
locally compact group. Then, for any two irreducible lattices Γ1 and Γ2 in G,
α(Γ1) = α(Γ2).
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The abscissa of convergence of ψ(s), which can be interpreted as the degree
αQ(C∞) of Q-rational representation growth, is equal to 1. In fact, writing

ψ(s) =
∏

p prime

(
1 + (p − 1)−s − p−s

)

︸ ︷︷ ︸
converges for Re(s) > 0

·
∏

p prime

(1 − p−s)−1

︸ ︷︷ ︸
Riemann zeta function ζ(s)

,
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N∑

n=1

r̂Q
n (C∞) = #{m | ϕ(m) ≤ N} ∼ cN as N → ∞.
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8 Arithmetic lattices in semisimple groups
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in the real Lie group SLn(R). More generally, let Γ be an arithmetic irreducible
lattice in a semisimple locally compact group G of characteristic 0. Then Γ is
commensurable to G(OS), where G is a connected, simply connected absolutely
almost simple algebraic group defined over a number field k and OS is the ring of
S-integers for a finite set S of places of k. By a theorem going back to Borel and
Harish-Chandra, any such G(OS) forms an irreducible lattice in the semisimple
locally compact group G =

∏
℘∈S G(k℘) under the diagonal embedding, as long

as S is non-empty and contains all archimedean places ℘ such that G(k℘) is
non-compact. Examples of this construction are SLn(Z[

√
2]) ⊆ SLn(R)×SLn(R)

and SLn(Z[1/p]) ⊆ SLn(R) × SLn(Qp). Margulis has shown that in the higher
rank situation all irreducible lattices are arithmetic and arise in this way. For
precise notions and a more complete description see [17].

Throughout the following we assume, for simplicity of notation, that Γ =
G(OS) as above. In [15], Lubotzky and Martin gave a characterisation of arith-
metic groups of polynomial representation growth, linking them to the classical
Congruence Subgroup Problem.
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representation rigid if and only if its Qp-Lie algebra L(G) is perfect. Let k be
a number field, and let O be its ring of integers. Let Λ be an O-Lie lattice such
that k⊗O Λ is perfect of dimension d. Let o be the completion Op of O at a non-
archimedean place p. Let O be a finite integral extension of o, corresponding
to a place P lying above p. For m ∈ N, let gm(O) denote the mth principal
congruence Lie sublattice of the O-Lie lattice O⊗O Λ. For sufficiently large m,
let Gm(O) be the p-adic analytic pro-p group exp(gm(O)).

Using the Kirillov orbit method for permissible Gm(O), e.g., SL1
n(Zp), we

can ‘linearise’ the problem of enumerating irreducible characters of the group
Gm(O) by their degrees. We then set up a generalised Igusa zeta function, i.e.,
a p-adic integral of the form

ZO(r, t) =

∫

(x,y)∈V (O)
|x|tP

⌊d/2⌋∏

j=1

�Fj(y) ∪ Fj−1(y)x2�r
P

�Fj−1(y)�r
P

dµ(x,y),

where V (O) ⊂ Od+1 is a union of cosets modulo P, Fj(Y) ⊂ O[Y] are poly-
nomial sets defined in terms of the structure constants of the underlying O-Lie
lattice Λ, �·�P is the P-adic maximum norm and µ is the additive Haar measure
on Od+1 with µ(Od+1) = 1. The integral ZO(r, t) allows us to treat ‘uniformly’
the representation zeta functions of the different groups exp(Gm(O)) arising
from the global O-Lie lattice Λ under variation of the place p of O, the local ring
extension O of Op and the congruence level m. In particular, we derive from
our analysis a Denef formula and local functional equations.

Theorem 8 (Avni, Klopsch, Onn and Voll [4]). In the setup described, there
exist r ∈ N and a rational function R(X1, . . . , Xr, Y ) ∈ Q(X1, . . . , Xr, Y ) such
that for almost every non-archimedean place p of k the following holds.

There are algebraic integers λ1, . . . , λr such that for all finite extensions O

of o = Op and all permissible m one has

ζGm(O)(s) = qfdm
p R(λf

1 , . . . , λf
r , q−fs

p ),

where qp is the residue field cardinality of o, f denotes the inertia degree of O

over o and d = dimk(k ⊗O Λ). Moreover, there is the functional equation

ζGm(O)(s)|qp→q−1
p

λi→λ−1

i

= q
fd(1−2m)
p ζGm(O)(s).

Furthermore, we obtain candidate pole sets and we show that, locally, ab-
scissae of convergence are monotone under ring extensions.

Theorem 9 (Avni, Klopsch, Onn and Voll [4]). In the setup described, there
exists a finite set P ⊂ Q>0 such that the following is true.
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Roughly speaking, the conjecture states that the ambient semisimple lo-
cally compact group does not only control whether lattices contained in it have
the CSP (as in Serre’s conjecture), but also what their polynomial degree of
representation growth is. A concrete example of a lattice in SLn(R) which is
rather different from the most familiar one SLn(Z) is the special unitary group
SUn(Z[

√
2], Z), consisting of all matrices A = (aij) over the ring Z[

√
2] with

det A = 1 and A−1 = (aσ
ji), where σ is the Galois automorphism of Q(

√
2)

swapping
√

2 and −
√

2.

9 New results for arithmetic groups and compact

p-adic Lie groups

The short announcement [2] summarises a number of results obtained re-
cently by the author in joint work with Avni, Onn and Voll. Details are ap-
pearing in [3, 4, 6]. The toolbox which we use to prove our results comprises a
variety of techniques which can only be hinted at: they include, for instance, the
Kirillov orbit method for p-adic analytic pro-p groups, methods from p-adic in-
tegration and the study of generalised Igusa zeta functions, the theory of sheets
of simple Lie algebras, resolution of singularities in characteristic 0, aspects of
the Weil conjectures regarding zeta functions of smooth projective varieties over
finite fields, approximative and exact Clifford theory.

In summary our main results are

• a global Denef formula for the zeta functions of principal congruence sub-
groups of compact p-adic Lie groups, such as SLm

n (Zp) ⊆ SLn(Zp);

• local functional equations for the zeta functions of principal congruence
subgroups of compact p-adic Lie groups, such as SLm

n (Zp) ⊆ SLn(Zp);

• candidate pole sets for the non-archimedean factors occurring in the Euler
product (8.1), e.g., the zeta functions ζSLn(Zp)(s);

• explicit formulae for the zeta functions of compact p-adic Lie groups of
type A2, such as SL3(Zp) and SU3(O, Zp) for unramified O;

• meromorphic continuation of zeta functions and a precise asymptotic de-
scription of the representation growth for arithmetic groups of type A2,
such as SL3(Z).

These results are clearly relevant in the context of the Euler product (8.1).
Moreover, a large part of our work applies in a more general context than
discussed so far. We recall from Section 6 that a compact p-adic Lie group G is
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Theorem 12 (Avni, Klopsch, Onn and Voll [5]). Let Φ be an irreducible
root system. Then there exists a constant αΦ such that for every number field
k with ring of integers O, every finite set S of places of k and every connected,
simply connected absolutely almost simple algebraic group G over k with absolute
root system Φ the following holds.

If the arithmetic group G(OS) has polynomial representation growth, then
α(G(OS)) = αΦ.

On the one hand, Theorem 12 is weaker than the conjecture of Larsen and
Lubotzky, because it does not resolve Serre’s conjecture on the Congruence
Subgroup Problem. However, Serre’s conjecture is known to be true in many
cases and we have the following corollary.

Corollary 1. Serre’s conjecture on the Congruence Subgroup Problem im-
plies Larsen and Lubotzky’s conjecture on the degrees of representation growth
of lattices in higher rank semisimple locally compact groups.

On the other hand, Theorem 12 is stronger than the conjecture of Larsen
and Lubotzky, because it shows that many arithmetic groups with the CSP
have the same degree of representation growth, even when they do not embed
as lattices into the same semisimple locally compact group. For instance, fixing
Φ of type An−1 for some n ≥ 3, all of the following groups (for which we also
display their embeddings as lattices into semisimple locally compact groups)
have the same degree of representation growth:

(1) SLn(Z) ⊆ SLn(R),

(2) SLn(Z[
√

2]) ⊆ SLn(R) × SLn(R),

(3) SLn(Z[i]) ⊆ SLn(C),

(4) SLn(Z[1/p]) ⊆ SLn(R) × SLn(Qp),

(5) SUn(Z[
√

2], Z) ⊆ SLn(R).

Presently, the only known explicit values of αΦ are: 2 for Φ of type A1 (see
[13]), and 1 for Φ of type A2 (see Theorem 10). It remains a challenging problem
to find a conceptual interpretation of αΦ for general Φ.

For the proof of Theorem 12 and further details we refer to the preprint [5].
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For all non-archimedean places p of k, all finite extensions O of o = Op and
all permissible m one has

{
Re(z) | z ∈ C a pole of ζGm(O)(s)

}
⊆ P.

In particular, one has α(Gm(O)) ≤ max P , and equality holds for a set of posi-
tive Dirichlet density.

Furthermore, if p is any non-archimedean place of k and if Op = o ⊆ O1 ⊆
O2 is a tower of finite ring extensions, then for every permissible m one has

α(Gm(O1)) ≤ α(Gm(O2)).

By a more detailed study of groups of type A2, we obtain the following the-
orems addressing, in particular, the conjecture of Larsen and Lubotzky stated
in Section 8. Analysing the unique subregular sheet of the Lie algebra sl3(C)
and using approximative Clifford theory, we prove the next result.

Theorem 10 (Avni, Klopsch, Onn and Voll [4]). Let Γ be an arithmetic
subgroup of a connected, simply connected simple algebraic group of type A2

defined over a number field. If Γ has the CSP, then α(Γ) = 1.

Employing exact Clifford theory, we obtain the following more detailed result
for the special linear group SL3(O) over the ring of integers of a number field.

Theorem 11 (Avni, Klopsch, Onn and Voll [6]). Let O be the ring of inte-
gers of a number field k. Then there exists ε > 0 such that the representation
zeta function of SL3(O) admits a meromorphic continuation to the half-plane
{s ∈ C | Re(s) > 1 − ε}. The continued function is analytic on the line
{s ∈ C | Re(s) = 1}, except for a double pole at s = 1.

Consequently, there is a constant c ∈ R>0 such that

RN (SL3(O)) =
N∑

n=1

rn(SL3(O)) ∼ c · N(log N) as N → ∞.

A key step in proving this result consists in deriving explicit formulae for
the representation zeta function of groups SL3(o), where o is a compact discrete
valuation ring of characteristic 0 and residue field characteristic different from 3.
In fact, we also derive similar results for special unitary groups SU3(O,O).

10 New results regarding the conjecture of Larsen

and Lubotzky

Very recently, in joint work with Avni, Onn and Voll we prove the following
theorem in connection with the conjecture of Larsen and Lubotzky which is
stated in Section 8.
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1 Background from Extension Theory

A group extension e of N by Q is a short exact sequence of groups and
homomorphisms

e : N
µ
֌ G

ε
։ Q,

so that N ≃ Im µ = Ker ε, G/Ker ε ≃ Q. Usually one writes N additively, G
and Q multiplicatively.

A morphism of extensions is a triple (α, β, γ) of homomorphisms such that
the diagram

e1 : N1
λ1−−−−→ G1

µ1−−−−→ Q1�α

�β

�γ

e2 : N2
λ2−−−−→ G2

µ2−−−−→ Q2

commutes. If α and γ – and hence β – are isomorphisms, then (α, β, γ) is an
isomorphism of extensions. If α, γ are identity maps, it is called an equivalence.
Let

[e]

denote the equivalence class of e and write

E(Q, N) = {[e] | e an extension of N by Q}

for the category of equivalence classes and morphisms of extensions of N by Q.
The main object of extension theory is to describe the set E(Q, N).

Automorphisms

http://siba-ese.unisalento.it/ c� 2013 Università del Salento
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1 Background from Extension Theory

A group extension e of N by Q is a short exact sequence of groups and
homomorphisms

e : N
µ
֌ G

ε
։ Q,

so that N ≃ Im µ = Ker ε, G/Ker ε ≃ Q. Usually one writes N additively, G
and Q multiplicatively.

A morphism of extensions is a triple (α, β, γ) of homomorphisms such that
the diagram

e1 : N1
λ1−−−−→ G1

µ1−−−−→ Q1�α

�β

�γ

e2 : N2
λ2−−−−→ G2

µ2−−−−→ Q2

commutes. If α and γ – and hence β – are isomorphisms, then (α, β, γ) is an
isomorphism of extensions. If α, γ are identity maps, it is called an equivalence.
Let

[e]

denote the equivalence class of e and write

E(Q, N) = {[e] | e an extension of N by Q}

for the category of equivalence classes and morphisms of extensions of N by Q.
The main object of extension theory is to describe the set E(Q, N).
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for x, y, z ∈ Q. Such a function ϕ : Q × Q → N is called a factor set . We may
assume that 1τ

Q = 1G, in which case ϕ(1, x) = 0 = ϕ(x, 1) for all x ∈ Q, and ϕ
is called a normalized factor set.

From xτyτ = (xy)τϕ(x, y)µ we deduce that

xξyξ = (xy)ξϕ(x, y), (x, y ∈ Q) (∗∗)
where a denotes conjugation by a in N . Call ξ and ϕ associated functions for
the extension e.

Constructing extensions

Suppose we are given groups N, Q and functions ξ : Q → Aut(N) and
ϕ : Q × Q → N (normalized), satisfying (∗) and (∗∗). Then we can construct
an extension

e(ξ, ϕ) : N
µ
֌ G(ξ, ϕ)

ε
։ Q,

where G(ξ, ϕ) = Q × N , with group operation

(x, a)(y, b) = (xy, ϕ(x, y) + ayξ + b), (x, y ∈ Q, a, b ∈ N).

Also aµ = (1, a) and (x, a)ε = x. Then the transversal function x �→ (x, 0) yields
associated functions ξ, ϕ for e(ξ, ϕ).

If N is abelian, it is a Q-module via the coupling ξ = χ : Q → Out(N) =
Aut(N) and ϕ ∈ Z2(Q, N) is a 2-cocycle, while there is a bijection

Eχ(Q, N) ←→ H2(Q, N).

2 The Automorphism Group of an Extension

Consider an extension
e : N

µ
֌G

ε
։ Q

with coupling χ. Assume µ : N →֒ G is inclusion and ε : G → Q = G/N is the
canonical map. If α ∈ Aut(e), then α induces automorphisms α|N in N , α|Q in
Q, while α �→ (α|N , α|Q) is a homomorphism,

Ψ : Aut(e) → Aut(N) × Aut(Q).

If α ∈ Ker Ψ, then α is trivial on N and G/N , so [G, α] ≤ A = Z(N), while the
map gN �→ g−1gα, (g ∈ G), is a derivation or 1-cocycle from Q to Z(N) = A.
In fact Ker Ψ ≃ Z1(Q, A) and there is an exact sequence

0 → Z1(Q, A) → Aut(e)
Ψ→Aut(N) × Aut(Q).

It is more difficult to identify Im Ψ. This is where the Wells sequence comes
into play.

123

An isomorphism (α, β, γ) from e to e is called an automorphism of e,

N
µ−−−−→ G

ε−−−−→ Q
�α

�β

�γ

N
µ−−−−→ G

ε−−−−→ Q

The pair (α, γ) ∈ Aut(N) × Aut(Q) is then said to be induced by β in e. The
automorphisms of e clearly form a group Aut(e) and

Aut(e) ≃ NAut(G)(Im µ) ≤ Aut(G).

We would like to understand the group Aut(e) and, in particular, to determine
which pairs (α, γ) are inducible in e.

Couplings and factor sets

Given an extension e : N
µ
֌G

ε
։Q, choose a transversal function

τ : Q → G,

i.e., a map such that τε = the identity map on Q. Conjugation in Im µ by
xτ , (x ∈ Q), induces an automorphism xξ in N ,

(axξ

)µ = (xτ )−1aµxτ , (a ∈ N),

so we have a function
ξ : Q → Aut(N).

Note that xξ depends on the choice of τ , but xξ(Inn(N)) does not. Define
xχ = xξ(Inn(N)) ∈ Out(N). Then

χ : Q → Out(N)

is a homomorphism which is independent of τ . This is the coupling of the
extension e. Equivalent extensions have the same coupling, so we can form

Eχ(Q, N),

the subcategory of extensions of N by Q with coupling χ.
The function τ is usually not a homomorphism, but

xτyτ = (xy)τ (ϕ(x, y))µ

where ϕ(x, y) ∈ N . The associative law (xτyτ )zτ = xτ (yτzτ ) implies that

ϕ(x, yz) + ϕ(y, z) = ϕ(xy, z) + ϕ(x, y) · zξ (∗)
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Properties of the Wells map

(i) Im Ψ = Ker Λ. (This is a routine calculation.)
For a long time it was believed that Λ, which is clearly not a homomor-

phism, was merely a set map. Then in 2010 Jin and Liu [4] discovered two very
interesting facts about Λ.
(ii) Λ : Comp(χ) → H2(Q, A) is a derivation, so that Λ ∈ Z1(Comp(χ), H2(Q, A))
and

(UV )Λ = (U)Λ · V + (V )Λ, (U, V ∈ Comp(χ)).

(iii) The cohomology class

[Λ] ∈ H1(Comp(χ), H2(Q, A))

depends on [e] only through its coupling χ, i.e., extensions with the same coupling
have cohomologous Wells maps Λ.

Applications of the Wells Sequence

For a given extension e : N ֌ G ։ Q with coupling χ, the inducibility
problem is to determine when a given pair (ϑ, ϕ) ∈ Aut(N)×Aut(Q) is induced
by some automorphism of e. This happens if and only if (ϑ, ϕ) ∈ Comp(χ) and
(ϑ, ϕ)Λ = 0.

We will describe theorems which reduce the inducibility problem to certain
subgroups of Q.

Reduction to Sylow subgroups

Consider an extension e : N ֌ G ։ Q = G/N with coupling χ where Q is
finite. Let π(Q) = {p1, . . . , pk} and choose Pi ∈ Sylpi

(Q), say Pi = Ri/N . Then
we have subextensions

ei : N ֌ Ri ։ Pi

with couplings χi = χ|Pi
. Let (ϑ, ϕ) ∈ Aut(N)×Aut(Q). Then Pϕ

i ∈ Sylpi
(Q),

so Pϕ
i = P

g−1

i

i for some gi ∈ G. Then Pϕgi

i = Pi, so ϕgi|Pi
∈ Aut(Pi).

Theorem 2. With the above notation, the pair (ϑ, ϕ) is inducible in e if
and only if (ϑgi, ϕgi|Pi

) is inducible in ei for i = 1, 2, . . . , k.

Proof. Necessity is routine. Assume the condition holds, i.e. (ϑgi, ϕgi|Pi
) is

inducible for i = 1, 2, . . . , k. Let A = Z(N).

(i) (ϑ, ϕ) is χ-compatible. This is a straightforward calculation.

(ii) (ϑ, ϕ) is inducible in e. To see this, form a subsequence of the Wells sequence
for e by restricting to automorphisms that leave Ri invariant.

0 → Z1(Q, A) → NAut(e)(Ri) → Ci → H2(Q, A)
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Theorem 1. (C. Wells [12]) Let e : N ֌ G ։ Q be an extension with
coupling χ : Q → Out(N) and let A = Z(N). Then there is an exact sequence

0 → Z1(Q, A) → Aut(e)
Ψ→ Comp(χ)

Λ→ H2(Q, A)

where Comp(χ) is the subgroup of χ-compatible pairs (ϑ, ϕ) ∈ Aut(N)×Aut(Q),
i.e., pairs satisfying ϕχ = χϑ, with ϑ conjugation by ϑ in Out(N).

To see where the compatibility condition comes from, let α ∈ Aut(e) induce
(ϑ, ϕ), so that (α)Ψ = (ϑ, ϕ). From

(axτ

)α = (aα)(x
τ )α

, (a ∈ N, x ∈ Q),

we get xξϑ ≡ ϑ(xϕ)ξ mod Inn(N). Thus ϑ−1xχϑ = (xϕ)χ in Out(N), i.e.
χϑ = ϕχ.

The Wells map Λ
Let (ϑ, ϕ) ∈ Comp(Λ). In order to understand where (ϑ, ϕ)Λ ∈ H2(Q, A)

comes from, we take note of two actions on the set Eχ(Q, N).

(i) H2(Q, A) acts regularly on Eχ(Q, N) by adding a fixed 2-cocycle to each
factor set.

(ii) Aut(N) × Aut(Q) acts in the natural way on Eχ(Q, N).
Hence, given (ϑ, ϕ) ∈ Comp(χ) and [e] ∈ Eχ(Q, N), by regularity there is a
unique h ∈ H2(Q, A) such that [e] = ([e] · (ϑ, ϕ)) · h. Define

(ϑ, ϕ)Λ = h,

so that
[e] = ([e] · (ϑ, ϕ)) · (ϑ, ϕ)Λ.
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By restriction form the commutative diagram

Comp(χ)
Λ−−−−→ H2(Q, A)

�resQi

�resQi

Comp(χi)
Λi−−−−→ H2(Qi, A)

where A = Z(N). Since (ϑ, ϕ|Qi
)Λi = 0, we have (ϑ, ϕ)Λ ∈ Ker(resQi

) for all
i ∈ I, and (ϑ, ϕ)Λ belongs to

K = Ker(H2(Q, A) → lim
←−

H2(Qi, A)) :

note here that
�
H2(Qi, A)

�
is an inverse system of abelian groups with restric-

tion maps.

A spectral sequence for Hn(lim
−→

,−)

In general cohomology does not interact well with direct limits. However,
there is a spectral sequence converging to Hn(lim

−→
{Qi} , A) = Hn(Q, A), namely

Epq
2

p+q=n
=⇒ Hn(Q, A)

where
Epq

2 = lim
←

(p) {Hq(Qi, A)}

and lim
←

(p) is the pth derived functor of lim
←

. (This may be deduced from the

Grothendieck spectral sequence – see [6], [9]). Hence when n = 2 we obtain a
series

0 = L0 ≤ L1 ≤ L2 ≤ L3 = H2(Q, A)

where L1 ≃ E20
∞ , L2/L1 ≃ E11

∞ and L3/L2 ≃ E02
∞ . Thus L2 = K and in our

situation (ϑ, ϕ)Λ ∈ L2. To prove that (ϑ, ϕ)Λ = 0 it suffices to show that

E11
2 = 0 = E20

2 .

For this to be true additional conditions must be imposed: for example,
�

p

rp(A) < ∞,

the sum being for p = 0 or a prime, i.e., A has finite total rank . In fact this
condition implies that

lim
←

(1)
�
H1(N, A)

�
= 0 = lim

←

(2)
�
AN

�
,

(see [2]). Hence (ϑ, ϕ)Λ = 0 and (ϑ, ϕ) is inducible in e.
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where Ci = {(λ, µ) ∈ Comp(χ) | Pµ
i = Pi}. Now apply the restriction map for

Pi to get the commutative diagram

Ci
Λ−−−−→ H2(Q, A)

�resPi

�resPi

Comp(χi)
Λi−−−−→ H2(Pi, A)

Since (ϑ, ϕ) and (gi, gi) are χ-compatible, (ϑgi, ϕgi) ∈ Comp(χ). Also

(ϑgi, ϕgi)resPi
◦ Λi = (ϑgi, ϕgi|Pi

)Λi = 0,

and Λ ◦ resPi
maps (ϑgi, ϕgi) to 0. Since Λ is a derivation,

(ϑgi, ϕgi)Λ = ((ϑ, ϕ)(gi, gi))Λ = (ϑ, ϕ)Λ · (gi, gi) + (gi, gi)Λ = (ϑ, ϕ)Λ.

This is because (gi, gi) is obviously inducible and it acts trivially on H2(Q, A).
Thus ((ϑ, ϕ)Λ)resPi

= 0 for i = 1, . . . , k.

Apply the corestriction map for Pi, noting that (resPi
) ◦ (corPi

) is multipli-
cation by |Q : Pi|. Also |Q| · |H2(Q, A)| = 0 and (ϑ, ϕ)Λ has order a p′i-number
for all i. Hence (ϑ, ϕ)Λ = 0, and (ϑ, ϕ) is inducible in e. QED

Special cases of Theorem 1 have appeared in [3] and [8].

Reduction to finite subgroups

Next consider an extension e : N ֌ G ։ Q with coupling χ where Q is a
locally finite group. Choose a local system of finite subgroups in Q

{Qi}i∈I ,

i.e., every finite subset of Q is contained in some Qi. Let I be ordered by
inclusion, i.e., i ≤ j if and only if Qi ≤ Qj . Then {Qi} is a direct system and
Q = lim

−→
{Qi}. By restricting to Qi, we form the corresponding subextension

ei : N ֌ Gi ։ Qi = Gi/N, (i ∈ I),

with coupling χi = χ|Qi
.

Suppose that (ϑ, ϕ) ∈ Aut(N) × Aut(Q) is given such that Qϕ
i = Qi for all

i. (If ϕ has finite order, such a system {Qi} will always exist). Assume that
(ϑ, ϕ|Qi

) is inducible in ei for all i ∈ I.

Question: does this imply that (ϑ, ϕ) is inducible in e ?
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A spectral sequence for Hn(lim
−→

,−)

In general cohomology does not interact well with direct limits. However,
there is a spectral sequence converging to Hn(lim

−→
{Qi} , A) = Hn(Q, A), namely

Epq
2

p+q=n
=⇒ Hn(Q, A)

where
Epq

2 = lim
←

(p) {Hq(Qi, A)}

and lim
←

(p) is the pth derived functor of lim
←

. (This may be deduced from the

Grothendieck spectral sequence – see [6], [9]). Hence when n = 2 we obtain a
series

0 = L0 ≤ L1 ≤ L2 ≤ L3 = H2(Q, A)

where L1 ≃ E20
∞ , L2/L1 ≃ E11

∞ and L3/L2 ≃ E02
∞ . Thus L2 = K and in our

situation (ϑ, ϕ)Λ ∈ L2. To prove that (ϑ, ϕ)Λ = 0 it suffices to show that

E11
2 = 0 = E20

2 .

For this to be true additional conditions must be imposed: for example,
�

p

rp(A) < ∞,

the sum being for p = 0 or a prime, i.e., A has finite total rank . In fact this
condition implies that

lim
←

(1)
�
H1(N, A)

�
= 0 = lim

←

(2)
�
AN

�
,

(see [2]). Hence (ϑ, ϕ)Λ = 0 and (ϑ, ϕ) is inducible in e.
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where Ci = {(λ, µ) ∈ Comp(χ) | Pµ
i = Pi}. Now apply the restriction map for

Pi to get the commutative diagram

Ci
Λ−−−−→ H2(Q, A)

�resPi

�resPi

Comp(χi)
Λi−−−−→ H2(Pi, A)

Since (ϑ, ϕ) and (gi, gi) are χ-compatible, (ϑgi, ϕgi) ∈ Comp(χ). Also

(ϑgi, ϕgi)resPi
◦ Λi = (ϑgi, ϕgi|Pi

)Λi = 0,

and Λ ◦ resPi
maps (ϑgi, ϕgi) to 0. Since Λ is a derivation,

(ϑgi, ϕgi)Λ = ((ϑ, ϕ)(gi, gi))Λ = (ϑ, ϕ)Λ · (gi, gi) + (gi, gi)Λ = (ϑ, ϕ)Λ.

This is because (gi, gi) is obviously inducible and it acts trivially on H2(Q, A).
Thus ((ϑ, ϕ)Λ)resPi

= 0 for i = 1, . . . , k.

Apply the corestriction map for Pi, noting that (resPi
) ◦ (corPi

) is multipli-
cation by |Q : Pi|. Also |Q| · |H2(Q, A)| = 0 and (ϑ, ϕ)Λ has order a p′i-number
for all i. Hence (ϑ, ϕ)Λ = 0, and (ϑ, ϕ) is inducible in e. QED

Special cases of Theorem 1 have appeared in [3] and [8].

Reduction to finite subgroups

Next consider an extension e : N ֌ G ։ Q with coupling χ where Q is a
locally finite group. Choose a local system of finite subgroups in Q

{Qi}i∈I ,

i.e., every finite subset of Q is contained in some Qi. Let I be ordered by
inclusion, i.e., i ≤ j if and only if Qi ≤ Qj . Then {Qi} is a direct system and
Q = lim

−→
{Qi}. By restricting to Qi, we form the corresponding subextension

ei : N ֌ Gi ։ Qi = Gi/N, (i ∈ I),

with coupling χi = χ|Qi
.

Suppose that (ϑ, ϕ) ∈ Aut(N) × Aut(Q) is given such that Qϕ
i = Qi for all

i. (If ϕ has finite order, such a system {Qi} will always exist). Assume that
(ϑ, ϕ|Qi

) is inducible in ei for all i ∈ I.

Question: does this imply that (ϑ, ϕ) is inducible in e ?
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Theorem 3. With the above notation, assume that Z(N) has finite total
rank. Then (ϑ, ϕ) is inducible in e if and only if (ϑ, ϕ|Qi

) is inducible in ei for
all i ∈ I.

By combining Theorems 1 and 2 we reduce the inducibility problem for Q
locally finite to the case of a finite p-group.

Counterexamples

Theorem 3 does not hold without some conditions on A = Z(N). Consider
a non-split extension

e : N ֌ G ։ Q

where G is locally finite, π(N) ∩ π(Q) = ∅, 2 �∈ π(N) and N is abelian. In fact
there are many such extensions – see for example [5], [11]. Let Qi ≤ Q be finite.
Then Hn(Qi, N) = 0 for all n ≥ 1 by Schur’s theorem, so that
ei : N ֌ Gi ։ Qi = Gi/N splits. Let ϑ ∈ Aut(N) be the inversion automor-
phism. Then (ϑ, 1) is inducible in ei for every i since ei is a split extension.
However, (ϑ, 1) is not inducible in e: for if it were, the cohomology class ∆ of e
would satisfy ∆ = ∆ϑ∗ = −∆ and hence ∆ = 0 since H2(Q, N) has no elements
of order 2. This is a contradiction.

Remark. Full details of the proofs may be found in [10].
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Abstract. Analogous to ∗-polynomial identities in rings, we introduce the concept of ∗-
group identities in groups. When F is an infinite field of characteristic different from 2, we
classify the torsion groups with involution G so that the unit group of FG satisfies a ∗-group
identity. The history and motivations will be given for such an investigation.
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1 Introduction and motivations

The motivation for the study of this topic is from two sides:

(a) Hartley’s conjecture on group identities of units of group rings,

(b) Amitsur’s Theorem on ∗-polynomial identities in rings.

Let F be a field and G a group. Write U(FG) for the unit group of the group
algebra FG. We say that a subset S of U(FG) satisfies a group identity if there
exists a non-trivial word w(x1, . . . , xn) in the free group on a countable set of
generators �x1, x2, . . .� such that w(u1, . . . , un) = 1 for all u1, . . . , un ∈ S.

Brian Hartley in the 80s conjectured that when F is infinite and G is torsion,
if U(FG) satisfies a group identity then FG satisfies a polynomial identity. We
recall that a subset H of an F -algebra A satisfies a polynomial identity if there
exists a non-zero polynomial f(x1, . . . , xn) in the free associative algebra on non-
commuting variables x1, x2, . . . over F , F{x1, x2, . . .}, such that f(a1, . . . , an) =
0 for all a1, . . . , an ∈ H (in this case we shall write also that H is PI).

Hartley’s conjecture was solved affirmatively by Giambruno, Jespers and
Valenti [3] in the semiprime case (hence, in particular, for fields of characteristic
zero) and by Giambruno, Sehgal and Valenti [7] in the general case. Its solution
was at the basis of the work of Passman [18] who characterized group algebras
whose units satisfy a group identity. Recall that, for any prime p, a group G
is said to be p-abelian if its commutator subgroup G′ is a finite p-group, and
0-abelian means abelian.
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Theorem 1. Let F be an infinite field of characteristic p > 0 and G a
torsion group. The following statements are equivalent:

(i) U(FG) satisfies a group identity;

(ii) U(FG) satisfies the group identity (x, y)pr
= 1, for some r ≥ 0;

(iii) G has a normal p-abelian subgroup of finite index and G′ is a p-group of
bounded exponent.

In the characteristic zero case, when G is torsion, U(FG) satisfies a group
identity if, and only if, G is abelian. In particular, the fact that G contains
a normal p-abelian subgroup of finite index (condition (iii) of the theorem) is
equivalent to saying that FG must satisfy a polynomial identity, as was estab-
lished earlier by Isaacs and Passman (see Corollaries 5.3.8 and 5.3.20 of [17]).
More recently, the above results have been extended to the more general context
of finite fields in [15] and [16] and arbitrary groups in [9].

Along this line, a natural question of interest is to ask whether group iden-
tities satisfied by some special subset of the unit group of FG can be lifted to
U(FG) or force FG to satisfy a polynomial identity. In this framework, the
symmetric units have been the subject of a good deal of attention.

Assume that F has characteristic different from 2. The linear extension to
FG of the map ∗ on G such that g∗ = g−1 for all g ∈ G is an involution of FG,
namely an antiautomorphism of order 2 of FG, called the classical involution.
An element α ∈ FG is said to be symmetric with respect to ∗ if α∗ = α. We
write FG+ for the set of symmetric elements, which are easily seen to be the
linear combinations of the terms g + g−1, g ∈ G. Let U+(FG) denote the set
of symmetric units. Giambruno, Sehgal and Valenti [8] confirmed a stronger
version of Hartley’s Conjecture by proving

Theorem 2. Let FG be the group algebra of a torsion group G over an
infinite field F of characteristic different from 2 endowed with the classical in-
volution. If U+(FG) satisfies a group identity, then FG satisfies a polynomial
identity.

Under the same restrictions as in the above theorem, they also obtained
necessary and sufficient conditions for U+(FG) to satisfy a group identity. Ob-
viously, group identities on U+(FG) do not force group identities on U(FG).
To see this it is sufficient to observe that if Q8 is the quaternion group of order
8, for any infinite field F of characteristic p > 2 FQ+

8 is commutative, hence
U+(FQ8) satisfies a group identity but, according to Theorem 1, U(FQ8) does
not satisfy a group identity. For a complete overview of these and related results
we refer to the monograph [13].
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Recently, there has been a considerable amount of work on involutions of
FG obtained as F -linear extensions of arbitrary group involutions on G (namely
antiautomorphisms of order 2 of G) other than the classical one. The final
outcome has been the complete classification of the torsion groups G such that
the units of FG which are symmetric under the given involution satisfy a group
identity (see [5]).

Here we discuss a more general problem, that of ∗-group identities on U(FG).
We can define an involution on the free group �x1, x2, . . .� via x∗

2i−1 := x2i

for all i ≥ 1. Renumbering, we obtain the free group with involution F :=
�x1, x

∗
1, x2, x

∗
2, . . .�. We say the unit group U(FG) satisfies a ∗-group identity if

there exists a non-trivial word w(x1, x
∗
1, . . . , xn, x∗

n) ∈ F such that

w(u1, u
∗
1, . . . , un, u∗

n) = 1

for all u1, . . . , un ∈ U(FG). Obviously, if U+(FG) satisfies the group identity
v(x1, . . . , xr), then U(FG) satisfies the ∗-group identity v(x1x

∗
1, . . . , xrx

∗
r). It

seems of interest to understand the behaviour of the symmetric units when
the group of units satisfies a ∗-group identity. The main motivation for this
investigation dates back to the classical result of Amitsur on ∗-polynomial iden-
tities satisfied by an algebra with involution. Let A be an F -algebra having
an involution ∗. We can define an involution on the free algebra F{x1, x2, . . .}
via x∗

2i−1 := x2i for all i ≥ 1. As in the free group case, renumbering we
obtain the free algebra with involution F{x1, x

∗
1, x2, x

∗
2, . . .}. We say that A

satisfies a ∗-polynomial identity (or A is ∗-PI) if there exists a non-zero element
f(x1, x

∗
1, . . . , xn, x∗

n) ∈ F{x1, x
∗
1, x2, x

∗
2, . . .} such that f(a1, a

∗
1, . . . , an, a∗n) = 0

for all a1, . . . , an ∈ A. It is obvious that if the symmetric elements of A satisfy
the polynomial identity g(x1, . . . , xr) then A satisfies the ∗-polynomial identity
g(x1+x∗

1, . . . , xr+x∗
r). It is more difficult to see that if A satisfies a ∗-polynomial

identity, then A+ satisfies a polynomial identity. The deep result of Amitsur [2]
shows that this is the case, by proving that if A satisfies a ∗-polynomial identity,
then A satisfies a polynomial identity.

The surprising result we obtain is just a group-theoretical analogue of Amit-
sur’s theorem for the unit groups of torsion group rings endowed with the linear
extension of an arbitrary group involution. The original results were estab-
lished in [6]. Recently a long and detailed survey on the subject by Lee [14] has
appeared.
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2 ∗-group identities on units of torsion group alge-

bras

Let �X� be the free group of countable rank on a set X := {x1, x2, . . .}. We
can regard it as a group with involution by setting, for every i ≥ 1, x∗

2i−1 = x2i

and extending ∗ to an involution of �X� in the obvious way. Write X1 :=
{x2i−1 | i ≥ 1} and X2 := {x2i | i ≥ 1}. The group above, we call F , has the
following universal property: if H is a group with involution, any map X1 −→ H
can be uniquely extended to a group homomorphism f : F −→ H commuting
with the involution.

Let 1 �= w(x1, x
∗
1, . . . , xn, x∗

n) ∈ F and let H be a group with involution ∗.
The word w is said to be a ∗-group identity (or ∗-GI) of H if w is equal to 1
for any evaluation ϕ(xi) = ui ∈ H, ϕ(x∗

i ) = u∗
i ∈ H with 1 ≤ i ≤ n. Clearly

a group identity is a ∗-GI. Moreover, since for any x ∈ X xx∗ is symmetric, a
group identity on symmetric elements of H yields a ∗-group identity of H. We
focus our attention on the converse problem, namely the possibility of a ∗-group
identity of H to force a group identity on the symmetric elements of H itself
when H is the unit group of a group algebra.

One of the key ingredients is the following result dealing with finite-dimensional
semisimple algebras with involution over an infinite field.

Lemma 1. Let A be a finite-dimensional semisimple algebra with involution
over an infinite field of characteristic different from 2. If its unit group U(A)
satisfies a ∗-GI, then A is a direct sum of finitely many simple algebras of
dimension at most 4 over their centre. Moreover A+ is central in A.

Proof. See Lemma 5 of [6]. QED

The conclusions of the above lemma are not a novelty in the setting of alge-
bras with involution. For instance the same happens when one considers finite-
dimensional semisimple algebras with involution whose symmetric elements are
Lie nilpotent (see [4]).

In the framework of group algebras, this gives crucial information on the
structure of the basis group. In fact, assume that F is an infinite field of
characteristic p > 2 and G a finite group with an involution ∗ and let FG have
the induced involution. Write P := {x |x ∈ G, x is a p-element}. Suppose
that U(FG) satisfies a ∗-group identity w. The Jacobson radical J of the group
algebra FG is nilpotent and ∗-invariant. This is sufficient to conclude that
U(FG/J) also satisfies w. But FG/J is finite-dimensional and semisimple. By
applying Lemma 1, the simple components of its Wedderburn decomposition are
all of dimension at most 4 over their centres. But Lemma 2.6 of [4] or Lemma 3
of [12] show that this forces P to be a (normal and ∗-invariant) subgroup of G.
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We can summarize all these deductions in the following

Lemma 2. Let F be an infinite field of characteristic p > 2 and G a finite
group with involution and let FG have the induced involution. If U(FG) satisfies
a ∗-group identity, then the p-elements of G form a subgroup.

It is trivial to see that the conclusion holds for locally finite groups G as
well.

Now, let F and G be as in the lemma. We know that if U(FG) satisfies a
∗-GI, then P is a subgroup, F (G/P ) has an induced involution and U(F (G/P ))
still satisfies a ∗-GI. By Lemma 1 F (G/P )+ is central in F (G/P ). In particular,
F (G/P )+ must be commutative. Therefore it is of interest to classify group
algebras with linear extensions of arbitrary group involutions whose symmetric
elements commute. In order to state this, a definition is required.

We recall that a group G is said to be an LC-group (that is, it has the “lack
of commutativity” property) if it is not abelian, but if g, h ∈ G, and gh = hg,
then at least one of g, h and gh must be central. These groups were introduced
by Goodaire. By Proposition III.3.6 of [10], a group G is an LC-group with a
unique non-identity commutator (which must, obviously, have order 2) if and
only if G/ζ(G) ∼= C2 × C2. Here, ζ(G) denotes the centre of G.

Definition 1. A group G endowed with an involution ∗ is said to be a
special LC-group, or SLC-group, if it is an LC-group, it has a unique non-
identity commutator z, and for all g ∈ G, we have g∗ = g if g ∈ ζ(G), and
otherwise, g∗ = zg.

The SLC-groups arise naturally in the following result proved by Jespers
and Ruiz Marin [11] for an arbitrary involution on G.

Theorem 3. Let R be a commutative ring of characteristic different from
2, G a non-abelian group with an involution ∗ which is extended linearly to RG.
The following statements are equivalent:

(i) RG+ is commutative;

(ii) RG+ is the centre of RG;

(iii) G is an SLC-group.

We recall that in [1] Amitsur proved that if R is a ring with involution and
R+ is PI, then R is PI. Later the same arguments were used by him to prove
that if R is ∗-PI, then R is PI. In particular, if R is ∗-PI then R+ is PI. The
developments for us were similar. In fact, by using exactly the same arguments
as in [5] (Section 3 for the semiprime case and Sections 4 and 5 for the general
case) we provide the following result which is the core of [6].
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Theorem 4. Let F be an infinite field of characteristic p �= 2, G a torsion
group with an involution ∗ which is extended linearly to FG. The following
statements are equivalent:

(i) the symmetric units of FG satisfy a group identity;

(ii) the units of FG satisfy a ∗-group identity;

(iii) one of the following conditions holds:

(a) FG is semiprime and G is abelian or an SLC-group;

(b) FG is not semiprime, the p-elements of G form a (normal) subgroup
P , G has a p-abelian normal subgroup of finite index, and either

(1) G′ is a p-group of bounded exponent, or

(2) G/P is an SLC-group and G contains a normal ∗-invariant p-
subgroup B of bounded exponent, such that P/B is central in
G/B and the induced involution acts as the identity on P/B.

References

[1] S.A. Amitsur, Rings with involution, Israel J. Math. 6 (1968), 99–106.

[2] S.A. Amitsur, Identities in rings with involution, Israel J. Math. 7 (1969), 63–68.

[3] A. Giambruno, E. Jespers, A. Valenti, Group identities on units of rings, Arch. Math. 63

(1994), 291–296.

[4] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Lie properties of symmetric elements in
group rings, J. Algebra 321 (2009), 890–902.

[5] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Group identities on symmetric units, J.
Algebra 322 (2009), 2801–2815.

[6] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Star-group identities and group of units,
Arch. Math. 95 (2010), 501–508.

[7] A. Giambruno, S.K. Sehgal, A. Valenti, Group algebras whose units satisfy a group iden-
tity, Proc. Amer. Math. Soc. 125 (1997), 629–634.

[8] A. Giambruno, S.K. Sehgal, A. Valenti, Symmetric units and group identities,
Manuscripta Math. 96 (1998), 443–461.

[9] A. Giambruno, S.K. Sehgal, A. Valenti, Group identities on units of group algebras, J.
Algebra 226 (2000), 488–504.

[10] E.G. Goodaire, E. Jespers, C. Polcino Milies, Alternative loop rings, North-Holland, Am-
sterdam, 1996.

[11] E. Jespers, M. Ruiz Marin, On symmetric elements and symmetric units in group rings,
Comm. Algebra 34 (2006), 727–736.

[12] G.T. Lee, Groups whose irriducible representations have degree at most 2, J. Pure Appl.
Algebra 199 (2005), 183–195.

137

[13] G.T. Lee, Group identities on units and symmetric units of group rings, Springer, London,
2010.

[14] G.T. Lee, A survey on ∗-group identities on units of group rings, Comm. Algebra 40

(2012), 4540–4567.

[15] C.H. Liu, Group algebras with units satisfying a group identity, Proc. Amer. Math. Soc.
127 (1999), 327–336.

[16] C.H. Liu, D.S. Passman Group algebras with units satisfying a group identity II, Proc.
Amer. Math. Soc. 127 (1999), 337–341.

[17] D.S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.

[18] D.S. Passman, Group algebras whose units satisfy a group identity II, Proc. Amer. Math.
Soc. 125 (1997), 657–662.

138



137

Theorem 4. Let F be an infinite field of characteristic p �= 2, G a torsion
group with an involution ∗ which is extended linearly to FG. The following
statements are equivalent:

(i) the symmetric units of FG satisfy a group identity;

(ii) the units of FG satisfy a ∗-group identity;

(iii) one of the following conditions holds:

(a) FG is semiprime and G is abelian or an SLC-group;

(b) FG is not semiprime, the p-elements of G form a (normal) subgroup
P , G has a p-abelian normal subgroup of finite index, and either

(1) G′ is a p-group of bounded exponent, or

(2) G/P is an SLC-group and G contains a normal ∗-invariant p-
subgroup B of bounded exponent, such that P/B is central in
G/B and the induced involution acts as the identity on P/B.

References

[1] S.A. Amitsur, Rings with involution, Israel J. Math. 6 (1968), 99–106.

[2] S.A. Amitsur, Identities in rings with involution, Israel J. Math. 7 (1969), 63–68.

[3] A. Giambruno, E. Jespers, A. Valenti, Group identities on units of rings, Arch. Math. 63

(1994), 291–296.

[4] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Lie properties of symmetric elements in
group rings, J. Algebra 321 (2009), 890–902.

[5] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Group identities on symmetric units, J.
Algebra 322 (2009), 2801–2815.

[6] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Star-group identities and group of units,
Arch. Math. 95 (2010), 501–508.

[7] A. Giambruno, S.K. Sehgal, A. Valenti, Group algebras whose units satisfy a group iden-
tity, Proc. Amer. Math. Soc. 125 (1997), 629–634.

[8] A. Giambruno, S.K. Sehgal, A. Valenti, Symmetric units and group identities,
Manuscripta Math. 96 (1998), 443–461.

[9] A. Giambruno, S.K. Sehgal, A. Valenti, Group identities on units of group algebras, J.
Algebra 226 (2000), 488–504.

[10] E.G. Goodaire, E. Jespers, C. Polcino Milies, Alternative loop rings, North-Holland, Am-
sterdam, 1996.

[11] E. Jespers, M. Ruiz Marin, On symmetric elements and symmetric units in group rings,
Comm. Algebra 34 (2006), 727–736.

[12] G.T. Lee, Groups whose irriducible representations have degree at most 2, J. Pure Appl.
Algebra 199 (2005), 183–195.

137

[13] G.T. Lee, Group identities on units and symmetric units of group rings, Springer, London,
2010.

[14] G.T. Lee, A survey on ∗-group identities on units of group rings, Comm. Algebra 40

(2012), 4540–4567.

[15] C.H. Liu, Group algebras with units satisfying a group identity, Proc. Amer. Math. Soc.
127 (1999), 327–336.

[16] C.H. Liu, D.S. Passman Group algebras with units satisfying a group identity II, Proc.
Amer. Math. Soc. 127 (1999), 337–341.

[17] D.S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.

[18] D.S. Passman, Group algebras whose units satisfy a group identity II, Proc. Amer. Math.
Soc. 125 (1997), 657–662.

138



Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 33 (2013) no. 1, 139–170. doi:10.1285/i15900932v33n1p139

Commutator width in Chevalley groups

Roozbeh Hazrat
University of Western Sydney rhazrat@gmail.com

Alexei Stepanov i

Saint Petersburg State University and Abdus Salam School of Mathematical Sciences, Lahore
stepanov239@gmail.com

Nikolai Vavilov ii

Saint Petersburg State University nikolai-vavilov@yandex.ru

Zuhong Zhang iii

Beijing Institute of Technology zuhong@gmail.com

Abstract. The present paper is the [slightly expanded] text of our talk at the Conference
“Advances in Group Theory and Applications” at Porto Cesareo in June 2011. Our main
results assert that [elementary] Chevalley groups very rarely have finite commutator width.
The reason is that they have very few commutators, in fact, commutators have finite width
in elementary generators. We discuss also the background, bounded elementary generation,
methods of proof, relative analogues of these results, some positive results, and possible gen-
eralisations.

Keywords: Chevalley groups, elementary subgroups, elementary generators, commutator
width, relative groups, bounded generation, standard commutator formulas, unitriangular
factorisations

MSC 2000 classification: 20G35, 20F12, 20F05

1 Introduction

In the present note we concentrate on the recent results on the commutator
width of Chevalley groups, the width of commutators in elementary generators,

iThis research was started within the framework of the RFFI/Indian Academy cooperation
project 10-01-92651 and the RFFI/BRFFI cooperation project 10-01-90016. Currently the
work is partially supported by the RFFI research project 11-01-00756 (RGPU) and by the
State Financed research task 6.38.74.2011 at the Saint Petersburg State University. At the
final stage the second author was supported also by the RFFI projects 13-01-00709 and 13-
01-91150.

iiThis research was started within the framework of the RFFI/Indian Academy cooperation
project 10-01-92651 and the RFFI/BRFFI cooperation project 10-01-90016. Currently the
work is partially supported by the RFFI research projects 11-01-00756 (RGPU) and 12-01-
00947 (POMI) and by the State Financed research task 6.38.74.2011 at the Saint Petersburg
State University. At the final stage the third author was supported also by the RFFI projects
13-01-00709 and 13-01-91150.

iiiThe work is partially supported by NSFC grant 10971011.
http://siba-ese.unisalento.it/ c© 2013 Università del Salento
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and the corresponding relative results. In fact, localisation methods used in the
proof of these results have many further applications, both actual and potential:
relative commutator formulas, multiple commutator formulas, nilpotency of K1,
description of subnormal subgroups, description of various classes of overgroups,
connection with excision kernels, etc. We refer to our surveys [36, 31, 32] and
to our papers [29, 35, 7, 40, 37, 38, 41, 76, 39, 33, 34] for these and further
applications and many further related references.

2 Preliminaries

2.1 Length and width

Let G be a group and X be a set of its generators. Usually one considers
symmetric sets, for which X−1 = X.

• The length lX(g) of an element g ∈ G with respect to X is the minimal
k such that g can be expressed as the product g = x1 . . . xk, xi ∈ X.

• The width wX(G) of G with respect to X is the supremum of lX(g) over
all g ∈ G. In the case when wX(G) = ∞, one says that G does not have
bounded word length with respect to X.

The problem of calculating or estimating wX(G) has attracted a lot of at-
tention, especially when G is one of the classical-like groups over skew-fields.
There are hundreds of papers which address this problem in the case when X
is either

• the set of elementary transvections

• the set of all transvections or ESD-transvections,

• the set of all unipotents,

• the set of all reflections or pseudo-reflections,

• other sets of small-dimensional transformations,

• a class of matrices determined by their eigenvalues, such as the set of all
involutions,

• a non-central conjugacy class,

• the set of all commutators,

etc., etc. Many further exotic generating sets have been considered, such as
matrices distinct from the identity matrix in one column, symmetric matrices,
etc., etc., etc. We do not make any attempt to list all such papers, there are
simply far too many, and vast majority of them produce sharp bounds for classes
of rings, which are trivial from our prospective, such as fields, or semi-local rings.
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2.2 Chevalley groups

Let us fix basic notation. This notation is explained in [1, 4, 60, 74, 75, 2,
3, 92, 95, 93], where one can also find many further references.

• Φ is a reduced irreducible root system;

• Fix an order on Φ, let Φ+, Φ− and Π = {α1, . . . , αl} are the sets of
positive, negative and fundamental roots, respectively.

• Let Q(Φ) be the root lattice of Φ, P (Φ) be the weight lattice of Φ and P
be any lattice such that Q(Φ) ≤ P ≤ P (Φ);

• R is a commutative ring with 1;

• G = GP (Φ, R) is the Chevalley group of type (Φ, P ) over R;

• In most cases P does not play essential role and we simply write G =
G(Φ, R) for any Chevalley group of type Φ over R;

• However, when the answer depends on P we usually write Gsc(Φ, R) for
the simply connected group, for which P = P (Φ) and Gad(Φ, R) for the
adjoint group, for which P = Q(Φ);

• T = T (Φ, R) is a split maximal torus of G;

• xα(ξ), where α ∈ Φ, ξ ∈ R, denote root unipotents G elementary with
respect to T ;

• E(Φ, R) is the [absolute] elementary subgroup of G(Φ, R), generated by
all root unipotents xα(ξ), α ∈ Φ, ξ ∈ R;

• EL(Φ, R) is the subset (not a subgroup!) of E(Φ, R), consisting of prod-
ucts of ≤ L root unipotents xα(ξ), α ∈ Φ, ξ ∈ R;

• H = H(Φ, R) = T (Φ, R) ∩ E(Φ, R) is the elementary part of the split
maximal torus;

• U±(Φ, R) is the unipotent radical of the standard Borel subgroup B(Φ, R)
or its opposite B−(Φ, R). By definition

U(Φ, R) =
〈
xα(ξ), α ∈ Φ+, ξ ∈ R

〉
.

U−(Φ, R) =
〈
xα(ξ), α ∈ Φ−, ξ ∈ R

〉
.

2.3 Chevalley groups versus elementary subgroups

Many authors not familiar with algebraic groups or algebraic K-theory do
not distinguish Chevalley groups and their elementary subgroups. Actu-
ally, these groups are defined dually.

141



141

and the corresponding relative results. In fact, localisation methods used in the
proof of these results have many further applications, both actual and potential:
relative commutator formulas, multiple commutator formulas, nilpotency of K1,
description of subnormal subgroups, description of various classes of overgroups,
connection with excision kernels, etc. We refer to our surveys [36, 31, 32] and
to our papers [29, 35, 7, 40, 37, 38, 41, 76, 39, 33, 34] for these and further
applications and many further related references.

2 Preliminaries

2.1 Length and width

Let G be a group and X be a set of its generators. Usually one considers
symmetric sets, for which X−1 = X.

• The length lX(g) of an element g ∈ G with respect to X is the minimal
k such that g can be expressed as the product g = x1 . . . xk, xi ∈ X.

• The width wX(G) of G with respect to X is the supremum of lX(g) over
all g ∈ G. In the case when wX(G) = ∞, one says that G does not have
bounded word length with respect to X.

The problem of calculating or estimating wX(G) has attracted a lot of at-
tention, especially when G is one of the classical-like groups over skew-fields.
There are hundreds of papers which address this problem in the case when X
is either

• the set of elementary transvections

• the set of all transvections or ESD-transvections,

• the set of all unipotents,

• the set of all reflections or pseudo-reflections,

• other sets of small-dimensional transformations,

• a class of matrices determined by their eigenvalues, such as the set of all
involutions,

• a non-central conjugacy class,

• the set of all commutators,

etc., etc. Many further exotic generating sets have been considered, such as
matrices distinct from the identity matrix in one column, symmetric matrices,
etc., etc., etc. We do not make any attempt to list all such papers, there are
simply far too many, and vast majority of them produce sharp bounds for classes
of rings, which are trivial from our prospective, such as fields, or semi-local rings.

140

2.2 Chevalley groups

Let us fix basic notation. This notation is explained in [1, 4, 60, 74, 75, 2,
3, 92, 95, 93], where one can also find many further references.

• Φ is a reduced irreducible root system;

• Fix an order on Φ, let Φ+, Φ− and Π = {α1, . . . , αl} are the sets of
positive, negative and fundamental roots, respectively.

• Let Q(Φ) be the root lattice of Φ, P (Φ) be the weight lattice of Φ and P
be any lattice such that Q(Φ) ≤ P ≤ P (Φ);

• R is a commutative ring with 1;

• G = GP (Φ, R) is the Chevalley group of type (Φ, P ) over R;

• In most cases P does not play essential role and we simply write G =
G(Φ, R) for any Chevalley group of type Φ over R;

• However, when the answer depends on P we usually write Gsc(Φ, R) for
the simply connected group, for which P = P (Φ) and Gad(Φ, R) for the
adjoint group, for which P = Q(Φ);

• T = T (Φ, R) is a split maximal torus of G;
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U(Φ, R) =
〈
xα(ξ), α ∈ Φ+, ξ ∈ R

〉
.

U−(Φ, R) =
〈
xα(ξ), α ∈ Φ−, ξ ∈ R

〉
.

2.3 Chevalley groups versus elementary subgroups

Many authors not familiar with algebraic groups or algebraic K-theory do
not distinguish Chevalley groups and their elementary subgroups. Actu-
ally, these groups are defined dually.
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• Chevalley groups G(Φ, R) are [the groups of R-points of] algebraic groups.
In other words, G(Φ, R) is defined as

G(Φ, R) = HomZ(Z[G], R),

where Z[G] is the affine algebra of G. By definition G(Φ, R) consists of
solutions in R of certain algebraic equations.

• As opposed to that, elementary Chevalley groups E(Φ, R) are generated
by elementary generators

E(Φ, R) =
〈
xα(ξ), α ∈ Φ, ξ ∈ R

〉
.

When R = K is a field, one knows relations among these elementary
generators, so that E(Φ, R) can be defined by generators and relations.
However, in general, the elementary generators are described by their
action in certain representations.

By the very construction of these groups E(Φ, R) ≤ G(Φ, R) but, as we
shall see, in general E(Φ, R) can be strictly smaller than G(Φ, R) even for fields.
The following two facts might explain, why some authors confuse E(Φ, R) and
G(Φ, R):

• Let R = K be any field. Then Gsc(Φ, K) = Esc(Φ, K).

• Let R = K be an algebraically closed field. Then Gad(Φ, K) = Ead(Φ, K).

However, for a field K that is not algebraically closed one usually has strict
inclusion Ead(Φ, K) < Gad(Φ, K). Also, as we shall see, even for principal ideal
domains Esc(Φ, R) < Gsc(Φ, R), in general.

2.4 Elementary generators

By the very construction Chevalley groups occur as subgroups of the general
linear group GL(n, R). Let e be the identity matrix and eij , 1 ≤ i, j ≤ n, be
a matrix unit, which has 1 in position (i, j) and zeros elsewhere. Below we list
what the elementary root unipotents, also known as elementary generators, look
like for classical groups.

• In the case Φ = Al one has n = l + 1. Root unipotents of SL(n, R) are
[elementary] transvections

tij(ξ) = e + ξeij , 1 ≤ i �= j ≤ n, ξ ∈ R.
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• In the case Φ = Dl one has n = 2l. We number rows and columns of ma-
trices from GL(n, R) as follows: 1, . . . , l,−l, . . . ,−1. Then root unipotents
of SO(2l, R) are [elementary] orthogonal transvections

Tij(ξ) = e + ξeij − ξe−j,−i, 1 ≤ i, j ≤ −1, i �= ±j, ξ ∈ R.

• In the case Φ = Cl also n = 2l and we use the same numbering of rows and
columns as in the even orthogonal case. Moreover, we denote εi the sign of
i, which is equal to +1 for i = 1, . . . , l and to −1 for i = −1, . . . ,−1. In Cl

there are two root lengths. Accordingly, root unipotents of Sp(2l, R) come
in two stocks. Long root unipotents are the usual linear transvections
ti,−i(ξ), 1 ≤ i ≤ −1, ξ ∈ R, while short root unipotents are [elementary]
symplectic transvections

Tij(ξ) = e + ξeij − εiεjξe−j,−i, 1 ≤ i, j ≤ −1, i �= ±j, ξ ∈ R.

• Finally, for Φ = Bl one has n = 2l+1 and we number rows and columns of
matrices from GL(n, R) as follows: 1, . . . , l, 0,−l, . . . ,−1. Here too there
are two root lengths. The long root elements of the odd orthogonal group
SO(2l+1, R) are precisely the root elements of the even orthogonal groups,
Tij(ξ), i �= ±j, i, j �= 0, ξ ∈ R. The short root elements have the form

Ti0(ξ) = e + ξei0 − 2ξe−i,0 − ξ2ei,−1, i �= 0, ξ ∈ R.

It would be only marginally more complicated to specify root elements of
spin groups and exceptional groups, in their minimal faithful representations,
see [93, 94].

2.5 Classical cases

Actually, most of our results are already new for classical groups. Recall
identification of Chevalley groups and elementary Chevalley groups for the clas-
sical cases. The second column of the following table lists traditional notation
of classical groups, according to types: Al the special linear group, Bl the odd
orthogonal group, Cl the symplectic group, and Dl the even orthogonal group.
These groups are defined by algebraic equations. Orthogonal groups are not sim-
ply connected, the corresponding simply connected groups are the spin groups.
The last column lists the names of their elementary subgroups, generated by
the elementary generators listed in the preceding subsection.
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Φ G(Φ, R) E(Φ, R)

Al SL(l + 1, R) E(l + 1, R)

Bl Spin(2l + 1, R) Epin(2l + 1, R)

SO(2l + 1, R) EO(2l + 1, R)

Cl Sp(2l, R) Ep(2l, R)

Dl Spin(2l, R) Epin(2l, R)

SO(2l, R) EO(2l, R)

Orthogonal groups [and spin groups] in this table are the split orthogonal
groups. Split means that they preserve a bilinear/quadratic form of maximal
Witt index. In the case of a field the group EO(n, K) was traditionally denoted
by Ω(n, K) and called the kernel of spinor norm. Since the group SO(n, K) is
not simply connected, in general Ω(n, K) is a proper subgroup of SO(n, K).

2.6 Dimension of a ring

Usually, dimension of a ring R is defined as the length d of the longest
strictly ascending chain of ideals I0 < I1 < . . . < Id of a certain class.

• The most widely known one is the Krull dimension dim(R) defined in
terms of chains of prime ideals of R. Dually, it can be defined as the
combinatorial dimension of Spec(R), considered as a topological space
with Zariski topology.

Recall, that the combinatorial dimension dim(X) of a topological space X
is the length of the longest descending chain of its irreducible subspaces X0 >
X1 > . . . > Xd. Thus, by definition,

dim(R) = dim(Spec(R)).

However, we mostly use the following more accurate notions of dimension.

• The Jacobson dimension j-dim(R) of R is defined in terms of j-ideals,
in other words, those prime ideals, which are intersections of maximal
ideals. Clearly, j-dim(R) coincides with the combinatorial dimension of the
maximal spectrum of the ring R, by definition, j-dim(R) = dim(Max(R))

144

Define dimension δ(X) of a topological space X as the smallest integer d such
that X can be expressed as a finite union of Noetherian topological spaces of
dimension ≤ d. The trick is that these spaces do not have to be closed subsets
of X.

• The Bass—Serre dimension of a ring R is defined as the dimension of its
maximal spectrum, δ(R) = δ(Max(R)).

Bass—Serre dimension has many nice properties, which make it better adapted
to the study of problems we consider. For instance, a ring is semilocal iff
δ(R) = 0 (recall that a commutative ring R is called semilocal if it has finitely
many maximal ideals).

2.7 Stability conditions

Mostly, stability conditions are defined in terms of stability of rows, or
columns. In this note we only refer to Bass’ stable rank, first defined in [9].
We will denote the [left] R-module of rows of length n by nR, to distinguish it
from the [right] R-module Rn of columns of height n.

A row (a1, . . . , an) ∈ nR is called unimodular, if its components a1, . . . , an

generate R as a right ideal,

a1R + . . . + anR = R.

or, what is the same, if there exist such b1, . . . , bn ∈ R that

a1b1 + . . . + anbn = 1.

The stable rank sr(R) of the ring R is the smallest such n that every uni-
modular row (a1, . . . , an+1) of length n + 1 is stable. In other words, there exist
elements b1, . . . bn ∈ R such that the row

(a1 + an+1b1, a2 + an+1b2, . . . , an + an+1bn)

of length n is unimodular. If no such n exists, one writes sr(R) = ∞.
In fact, stable rank is a more precise notion of dimension of a ring, based

on linear algebra, rather than chains of ideals. It is shifted by 1 with respect
to the classical notions of dimension. The basic estimate of stable rank is Bass’
theorem, asserting that sr(R) ≤ δ(R) + 1.

Especially important in the sequel is the condition sr(R) = 1. A ring R has
stable rank 1 if for any x, y ∈ R such that xR+yR = R there exists a z ∈ R such
that (x + yz)R = R. In fact, rings of stable rank 1 are weakly finite (one-sided
inverses are automatically two-sided), so that this last condition is equivalent
to invertibility of x + yz. Rings of stable rank 1 should be considered as a class
of 0-dimensional rings, in particular, all semilocal rings have stable rank 1. See
[87] for many further examples and references.
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2.8 Localisation

Let, as usual, R be a commutative ring with 1, S be a multiplicative system
in R and S−1R be the corresponding localisation. We will mostly use localisation
with respect to the two following types of multiplicative systems.

• Principal localisation: the multiplicative system S is generated by a non-
nilpotent element s ∈ R, viz. S = �s� = {1, s, s2, . . .}. In this case we
usually write �s�−1R = Rs.

• Maximal localisation: the multiplicative system S equals S = R \ m,
where m ∈ Max(R) is a maximal ideal in R. In this case we usually write
(R \ m)−1R = Rm.

We denote by FS : R −→ S−1R the canonical ring homomorphism called
the localisation homomorphism. For the two special cases mentioned above, we
write Fs : R −→ Rs and Fm : R −→ Rm, respectively.

Both G(Φ, ) and E(Φ, ) commute with direct limits. In other words, if
R = lim−→Ri, where {Ri}i∈I is an inductive system of rings, then G(Φ, lim−→Ri) =
lim−→G(Φ, Ri) and the same holds for E(Φ, R). Our proofs crucially depend on
this property, which is mostly used in the two following situations.

• First, let Ri be the inductive system of all finitely generated subrings of
R with respect to inclusion. Then X = lim−→X(Φ, Ri), which reduces most
of the proofs to the case of Noetherian rings.

• Second, let S be a multiplicative system in R and Rs, s ∈ S, the inductive
system with respect to the localisation homomorphisms: Ft : Rs −→ Rst.
Then X(Φ, S−1R) = lim−→X(Φ, Rs), which allows to reduce localisation
with respect to any multiplicative system to principal localisations.

2.9 K1-functor

The starting point of the theory we consider is the following result, first
obtained by Andrei Suslin [80] for SL(n, R), by Vyacheslav Kopeiko [48] for
symplectic groups, by Suslin and Kopeiko [81] for even orthogonal groups and
by Giovanni Taddei [83] in general.

Theorem 1. Let Φ be a reduced irreducible root system such that rk(Φ) ≥ 2.
Then for any commutative ring R one has E(Φ, R) � G(Φ, R).

In particular, the quotient

K1(Φ, R) = Gsc(Φ, R)/Esc(Φ, R)

is not just a pointed set, it is a group. It is called K1-functor.
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The groups G(Φ, R) and E(Φ, R) behave functorially with respect to both R
and Φ. In particular, to an embedding of root systems ∆ ⊆ Φ there corresponds
the map ϕ : G(∆, R) −→ G(Φ, R) of the corresponding [simply connected]
groups, such that ϕ(E(∆, R)) ≤ E(Φ, R). By homomorphism theorem it defines
the stability map ϕ : K1(∆, R) −→ K1(Φ, R).

In the case Φ = Al this K1-functor specialises to the functor

SK1(n, R) = SL(n, R)/E(n, R),

rather than the usual linear K1-functor K1(n, R) = GL(n, R)/E(n, R). In ex-
amples below we also mention the corresponding stable K1-functors, which are
defined as limits of K1(n, R) and SK1(n, R) under stability embeddings, as n
tends to infinity:

SK1(R) = lim−→SK1(n, R), K1(R) = lim−→K1(n, R).

Another basic tool are stability theorems, which assert that under some
assumptions on ∆,Φ and R stability maps are surjective or/and injective. We
do not try to precisely state stability theorems for Chevalley groups, since they
depend on various analogues and higher versions of stable rank, see in particular
[75, 64, 65, 66].

However, to give some feel, we state two classical results pertaining to the
case of SL(n, R). These results, which are due to Bass and Bass—Vaserstein,
respectively, are known as surjective stability of K1 and injective stability of
K1. In many cases they allow to reduce problems about groups of higher ranks,
to similar problems for groups of smaller rank.

Theorem 2. For any n ≥ sr(R) the stability map

K1(n, R) −→ K1(n + 1, R)

is surjective. In other words,

SL(n + 1, R) = SL(n, R)E(n + 1, R).

Theorem 3. For any n ≥ sr(R) + 1 the stability map

K1(n, R) −→ K1(n + 1, R)

is injective. In other words,

SL(n, R) ∩ E(n + 1, R) = E(n, R).
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Theorem 3. For any n ≥ sr(R) + 1 the stability map
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is injective. In other words,
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2.10 K1-functor: trivial or non-trivial

Usually, K1-functor is non-trivial. But in some important cases it is trivial.
Let us start with some obvious examples.

• R = K is a field.

• More generally, R is semilocal

• R is Euclidean

• It is much less obvious that K1 does not have to be trivial even for principal
ideal rings. Let us cite two easy examples discovered by Ischebeck [43] and
by Grayson and Lenstra [26], respectively.

• Let K be a field of algebraic functions of one variable with a perfect field
of constants k. Then the ring R = K ⊗k k(x1, . . . , xm) is a principal ideal
ring. If, moreover, m ≥ 2, and the genus of K is distinct from 0, then
SK1(R) �= 1.

• Let R = Z[x], and S ⊆ R be the multiplicative subsystem of R generated
by cyclotomic polynomials Φn, n ∈ N. Then S−1R is a principal ideal ring
such that SK1(S

−1R) �= 1.

This is precisely why over a Euclidean ring it is somewhat easier to find
Smith form of a matrix, than over a principal ideal ring.

However, there are some further examples, when K1 is trivial. Usually, they
are very deep. The first example below is part of the [almost] positive solution
of the congruence subgroup problem by Bass—Milnor—Serre and Matsumoto
[10, 60]. The second one is the solution of K1-analogue of Serre’s problem by
Suslin [80].

• R = OS is a Hasse domain.

• R = K[x1, . . . , xm] is a polynomial ring over a field.

2.11 K1-functor, abelian or non-abelian

Actually, K1(Φ, R) is not only non-trivial. Oftentimes, it is even non-abelian.
The first such examples were constructed by Wilberd van der Kallen [45] and
Anthony Bak [6]. In both cases proofs are of topological nature and use homo-
topy theory.

• Wilberd van der Kallen [45] constructs a number of examples, where
K1(n, R) is non-abelian. For instance,

R = R[x1, x2, y1, y2, y3, y4]/(x2
1 + x2

2 = y2
1 + y2

2 + y2
3 + y2

4 = 1)
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is a 4-dimensional ring for which [SL(4, R),SL(4, R)] �≤ E(4, R). In fact,
in this case even

[SL(2, R),SL(4, R)] �≤ GL(3, R)E(4, R).

• Anthony Bak [6] constructs examples of [finite dimensional] subrings R
in the rings of continuous functions RX and CX on certain topological
spaces X, for which not only K1(n, R), n ≥ 3, is non-abelian, but even its
nilpotency class can be arbitrarily large.

The question arises, as to how non-abelian K1(Φ, R) may be. For finite
dimensional rings this question was answered by Anthony Bak [6] for SL(n, R),
for other even classical groups by the first author [29] and for all Chevalley
groups by the first and the third authors [35].

Theorem 4. Let Φ be a reduced irreducible root system such that rk(Φ) ≥ 2.
Further let R be a commutative ring of Bass—Serre dimension δ(R) = d < ∞.
Then K1(Φ, R) is nilpotent of class ≤ d + 1.

This theorem relies on a version of localisation method which Bak called
localisation-completion [6]. This method turned out to be crucial for the proof
of results we discuss in the present paper, see [36, 31] for more historical back-
ground and an introduction to this method in non-technical terms.

3 Main problems

3.1 Statement of the main problems

In this paper we discuss the following problem.

Problem 1. Estimate the width of E(Φ, R) with respect to the set of ele-
mentary commutators

X =
{
[x, y] = xyx−1y−1, x ∈ G(Φ, R), y ∈ E(Φ, R)

}
.

Observe, that one could not have taken the set

X =
{
[x, y] = xyx−1y−1, x, y ∈ G(Φ, R)

}

here, since K1(Φ, R) maybe non-abelian.
It turns out that this problem is closely related to the following problem.

Problem 2. Estimate the width of E(Φ, R) with respect to the set of ele-
mentary generators

X =
{
xα(ξ), α ∈ Φ, ξ ∈ R

}
.

The answer in general will be highly unexpected, so we start with discussion
of classical situations.
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3.2 The group SL(2, R)

Let us mention one assumption that is essential in what follows.

When R is Euclidean, expressions of matrices in SL(2, R) as products of
elementary transvections correspond to continued fractions. Division chains in
Z can be arbitrarily long, it is classically known that two consecutive Fibonacci
numbers provide such an example. Thus, we get.

Fact 1. SL(2, Z) does not have bounded length with respect to the elementary
generators.

Actually, behavious of the group SL(2, R) is exceptional in more than one
respect. Thus, the groups E(n, R), n ≥ 3 are perfect. The group E(2, R) is
usually not.

Fact 2. [SL(2, Z),SL(2, Z)] has index 12 in SL(2, Z).

• Thus, in the sequel we always assume that rk(Φ) ≥ 2.

• In fact, it is material for most of our results that the group E(Φ, R) is
perfect. It usually is, the only counter-examples in rank ≥ 2 stemming
from the fact that Sp(4, GF 2) and G(G2, GF 2) are not perfect. Thus, in
most cases one should add proviso that E(Φ, R) is actually perfect, which
amounts to saying that R does not have residue field GF2 for Φ = B2, G2.

The reader may take these two points as standing assumptions for the rest of
the note.

3.3 The answers for fields

The following result easily follows from Bruhat decomposition.

Theorem 5. The width of Gsc(Φ, K) with respect to the set of elementary
generators is ≤ 2|Φ+| + 4 rk(Φ).

Rimhak Ree [67] observed that the commutator width of semisimple alge-
braic groups over an algebraically closed fields equals 1. For fields containing
≥ 8 elements the following theorems were established by Erich Ellers and Nikolai
Gordeev [21] using Gauss decomposition with prescribed semi-simple part [16].
On the other hand, for very small fields these theorems were recently proven by
Martin Liebeck, Eamonn O’Brien, Aner Shalev, and Pham Huu Tiep [51, 52],
using explicit information about maximal subgroups and very delicate character
estimates.

Actually, the first of these theorems in particular completes the answer to
Ore conjecture, whether any element of a [non-abelian] finite simple group is a
single commutator.
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Theorem 6. The width of Ead(Φ, K) with respect to commutators is 1.

Theorem 7. The width of Gsc(Φ, K) with respect to commutators is ≤ 2.

3.4 The answers for semilocal rings

The following results were recently published by Andrei Smolensky, Sury
and the third author [73, 96]. Actually, their proofs are easy combinations
of Bass’ surjective stability [9] and Tavgen’s rank reduction theorem [84]. The
second of these decompositions, the celebrated Gauss decomposition, was known
for semilocal rings, the first one was known for SL(n, R), see [20], but not in
general.

Theorem 8. Let sr(R) = 1. Then the

E(Φ, R) = U+(Φ, R)U−(Φ, R)U+(Φ, R)U−(Φ, R).

Corollary 1. Let sr(R) = 1. Then the width of E(Φ, R) with respect to the
set of elementary generators is at most M = 4|Φ+|.

Theorem 9. Let sr(R) = 1. Then the

E(Φ, R) = U+(Φ, R)U−(Φ, R)H(Φ, R)U(Φ, R).

Corollary 2. Let sr(R) = 1. Then the width of E(Φ, R) with respect to the
set of elementary generators is at most M = 3|Φ+| + 4 rk(Φ).

In particular, the width of E(Φ, R) over a ring with sr(R) = 1 with respect
to commutators is always bounded, but its explicit calculation is a non-trivial
task. Let us limit ourselves with the following result by Leonid Vaserstein and
Ethel Wheland [90, 91].

Theorem 10. Let sr(R) = 1. Then the width of E(n, R), n ≥ 3, with
respect to commutators is ≤ 2.

There are also similar results by You Hong, Frank Arlinghaus and Leonid
Vaserstein [101, 5] for other classical groups, but they usually assert that the
commutator width is ≤ 3 or ≤ 4, and sometimes impose stronger stability
conditions such as asr(R) = 1, Λ sr(R) = 1, etc.

The works by Nikolai Gordeev and You Hong, where similar results are
established for exceptional groups over local rings [subject to some mild restric-
tions on their residue fields] are still not published.

3.5 Bounded generation

Another nice class of rings, for which one may expect positive answers to
the above problems, are Dedekind rings of arithmetic type.
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Let K be an algebraic number field, i.e. either a finite algebraic extension of
Q, and further let S be a finite set of (non-equivalent) valuations of K, which
contains all Archimedian valuations. For a non-Archimedian valuation p of the
field K we denote by vp the corresponding exponent. As usual, R = OS denotes
the ring, consisting of x ∈ K such that vp(x) ≥ 0 for all valuations p of K, which
do not belong to S. Such a ring OS is known as the Dedekind ring of arithmetic
type, determined by the set of valuations S of the field K. Such rings are also
called Hasse domains, see, for instance, [10]. Sometimes one has to require that
|S| ≥ 2, or, what is the same, that the multiplicative group O∗

S of the ring OS

is infinite.

Bounded generation of SL(n,OS), n ≥ 3, was established by David Carter
and Gordon Keller in [11, 12, 13, 14, 15], see also the survey by Dave Witte
Morris [61] for a modern exposition. The general case was solved by Oleg Tavgen
[84, 85]. The result by Oleg Tavgen can be stated in the following form due to
the [almost] positive solution of the congruence subgroup problem [10, 60].

Theorem 11. Let OS be a Dedekind ring of arithmetic type, rk(Φ) ≥ 2.
Then the elementary Chevalley group G(Φ,OS) has bounded length with respect
to the elementary generators.

In Section 6 we discuss what this implies for the commutator width.

See also the recent works by Edward Hinson [42], Loukanidis and Murty
[55, 62], Sury [79], Igor Erovenko and Andrei Rapinchuk [23, 24, 25], for dif-
ferent proofs, generalisations and many further references, concerning bounded
generation.

3.6 van der Kallen’s counter-example

However, all hopes for positive answers in general are completely abolished
by the following remarkable result due to Wilberd van der Kallen [44].

Theorem 12. The group SL(3, C[t]) does not have bounded word length with
respect to the elementary generators.

It is an amazing result, since C[t] is Euclidean. Since sr(C[t]) = 2 we get the
following corollary

Corollary 3. None of the groups SL(n, C[t]), n ≥ 3, has bounded word
length with respect to the elementary generators.

See also [22] for a slightly easier proof of a slightly stronger result. Later
Dennis and Vaserstein [20] improved van der Kallen’s result to the following.

Theorem 13. The group SL(3, C[t]) does not have bounded word length with
respect to the commutators.
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Since for n ≥ 3 every elementary matrix is a commutator, this is indeed
stronger, than the previous theorem.

4 Absolute commutator width

Here we establish an amazing relation between Problems 1 and 2.

4.1 Commutator width in SL(n,R)

The following result by Alexander Sivatsky and the second author [72] was
a major breakthrough.

Theorem 14. Suppose that n ≥ 3 and let R be a Noetherian ring such
that dim Max(R) = d < ∞. Then there exists a natural number N = N(n, d)
depending only on n and d such that each commutator [x, y] of elements x ∈
E(n, R) and y ∈ SL(n, R) is a product of at most N elementary transvections.

Actually, from the proof in [72] one can derive an efficient upper bound on
N , which is a polynomial with the leading term 48n6d.

It is interesting to observe that it is already non-trivial to replace here an
element of SL(n, R) by an element of GL(n, R). Recall, that a ring of geometric
origin is a localisation of an affine algebra over a field.

Theorem 15. Let n ≥ 3 and let R be a ring of geometric origin. Then
there exists a natural number N depending only on n and R such that each
commutator [x, y] of elements x ∈ E(n, R) and y ∈ GL(n, R) is a product of at
most N elementary transvections.

Let us state another interesting variant of the Theorem 14, which may be
considered as its stable version. Its proof crucially depends on the Suslin—
Tulenbaev proof of the Bass—Vaserstein theorem, see [82].

Theorem 16. Let n ≥ sr(R) + 1. Then there exists a natural number
N depending only on n such that each commutator [x, y] of elements x, y ∈
GL(n, R) is a product of at most N elementary transvections.

Actually, [72] contains many further interesting results, such as, for example,
analogues for the Steinberg groups St(n, R), n ≥ 5. However, since this result
depends on the centrality of K2(n, R) at present there is no hope to generalise
it to other groups.

4.2 Decomposition of unipotents

The proof of Theorem 14 in [72] was based on a combination of localisation
and decomposition of unipotents [77]. Essentially, in the simplest form decom-
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position of unipotents gives finite polynomial expressions of the conjugates

gxα(ξ)g−1, α ∈ Φ, ξ ∈ R, g ∈ G(Φ, R),

as products of factors sitting in proper parabolic subgroups, and, in the final
count, as products of elementary generators.

Roughly speaking, decomposition of unipotents allows to plug in explicit
polynomial formulas as the induction base — which is the most difficult part of
all localisation proofs! — instead of messing around with the length estimates
in the conjugation calculus.

To give some feel of what it is all about, let us state an immediate corollary
of the Theme of [77]. Actually, [77] provides explicit polynomial expressions of
the elementary factors, rather than just the length estimate.

Fact 3. Let R be a commutative ring and n ≥ 3. Then any transvection of
the form gtij(ξ)g

−1, 1 ≤ i �= j ≤ n, ξ ∈ R, g ∈ GL(n, R) is a product of at most
4n(n − 1) elementary transvections.

It is instructive to compare this bound with the bound resulting from Suslin’s
proof of Suslin’s normality theorem [80]. Actually, Suslin’s direct factorisation
method is more general, in that it yields elementary factorisations of a broader
class of transvections. On the other hand, it is less precise, both factorisations
coincide for n = 3, but asymptotically factorisation in Fact 3 is better.

Fact 4. Let R be a commutative ring and n ≥ 3. Assume that u ∈ Rn is a
unimodular column and v ∈ nR be any row such that vu = 0. Then the transvec-
tion e + uv is a product of at most n(n − 1)(n + 2) elementary transvections.

Let us state a counterpart of the Theorem 14 that results from the Fact 3
alone, without the use of localisation. This estimate works for arbitrary com-
mutative rings, but depends on the length of the elementary factor. Just wait
until subsection 4.5!

Theorem 17. Let n ≥ 3 and let R be a commutative ring. Then there
exists a natural number N = N(n, M) depending only on n and M such that
each commutator [x, y] of elements x ∈ EM (n, R) and y ∈ SL(n, R) is a product
of at most N elementary transvections.

It suffices to expand a commutator [x1 . . . xM , y], where xi are elementary
transvections, with the help of the commutator identity [xz, y] = x[z, y] · [x, y],
and take the upper bound 4n(n − 1) + 1 for each of the resulting commutators
[xi, y]. One thus gets N ≤ M2 + 4n(n − 1)M .

However, such explicit formulas are only available for linear and orthogonal
groups, and for exceptional groups of types E6 and E7. Let us state the estimate
resulting from the proof of [93, Theorems 4 and 5].
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Fact 5. Let R be a commutative ring and Φ = E6, E7. Then any root
element of the form gxα(ξ)g−1, α ∈ Φ, ξ ∈ R, g ∈ G(Φ, R) is a product of at
most 4 · 16 · 27 = 1728 elementary root unipotents in the case of Φ = E6 and of
at most 4 · 27 · 56 = 6048 elementary root unipotents in the case of Φ = E7.

Even for symplectic groups — not to say for exceptional groups of types
E8, F4 and G2! — it is only known that the elementary groups are generated by
root unipotents of certain classes, which afford reduction to smaller ranks, but
no explicit polynomial factorisations are known, and even no polynomial length
estimates.

This is why generalisation of Theorem 14 to Chevalley groups requires a new
idea.

4.3 Commutator width of Chevalley groups

Let us state the main result of [78]. While the main idea of proof comes from
the work by Alexander Sivatsky and the second author [72], most of the actual
calculations are refinements of conjugation calculus and commutator calculus
in Chevalley groups, developed by the first and the third authors in [35].

Theorem 18. Let G = G(Φ, R) be a Chevalley group of rank l ≥ 2 and
let R be a ring such that dim Max(R) = d < ∞. Then there exists a natural
number N depending only on Φ and d such that each commutator [x, y] of
elements x ∈ G(Φ, R) and y ∈ E(Φ, R) is a product of at most N elementary
root unipotents.

Here we cannot use decomposition of unipotents. The idea of the second
author was to use the second localisation instead. As in [72] the proof starts
with the following lemma, where M has the same meaning as in Subsection 3.4.

Lemma 1. Let d = dim(Max(R)) and x ∈ G(Φ, R). Then there exist
t0, . . . , tk ∈ R, where k ≤ d, generating R as an ideal and such that Fti(x) ∈
EM (Φ, Rti) for all i = 0, . . . , k.

Since t0, . . . , tk are unimodular, their powers also are, so that we can rewrite
y as a product of yi, where each yi is congruent to e modulo a high power of ti.
In the notation of the next section this means that yi ∈ E(Φ, R, tmi R).

When the ring R is Noetherian, G(Φ, R, tmi R) injects into G(Φ, Rti) for some
high power tmi . Thus, it suffices to show that Fti([x, yi]) is a product of bounded
number of elementary factors without denominators in E(Φ, Rti). This is the
first localisation.

The second localisation consists in applying the same argument again, this
time in Rti . Applying Lemma 1 once more we can find s0, . . . , sd forming a
unimodular row, such that the images of yi in E(Φ, Rtisj

) are products of
at most M elementary root unipotents with denominators sj . Decomposing
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position of unipotents gives finite polynomial expressions of the conjugates
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Fsj
(x) ∈ E(Φ, Rsj

) into a product of root unipotents, and repeatedly apply-
ing commutator identities, we eventually reduce the proof to proving that the
length of each commutator of the form

[
xα

( tli
sj

a
)
, xβ

(sn
j

ti
b
)]

is bounded.

4.4 Commutator calculus

Conjugation calculus and commutator calculus consists in rewriting conju-
gates (resp. commutators) with denominators as products of elementary gener-
ators without denominators.

Let us state a typical technical result, the base of induction of the commu-
tator calculus.

Lemma 2. Given s, t ∈ R and p, q, k, m ∈ N, there exist l, m ∈ N and
L = L(Φ) such that

[
xα

( tl

sk
a
)
, xβ

( sn

tm
b
)]

∈ EL(Φ, sptqR).

A naive use of the Chevalley commutator formula gives L ≤ 585 for simply
laced systems, L ≤ 61882 for doubly laced systems and L ≤ 797647204 for
Φ = G2. And this is just the first step of the commutator calculus!

Reading the proof sketched in the previous subsection upwards, and repeat-
edly using commutator identities, we can eventually produce bounds for the
length of commutators, ridiculous as they can be.

Recently in [34] the authors succeeded in producing a similar proof for Bak’s
unitary groups, see [28, 47, 8, 36] and references there. The situation here is
in many aspects more complicated than for Chevalley groups. In fact, Bak’s
unitary groups are not always algebraic, and all calculations should be inherently
carried through in terms of form ideals, rather then ideals of the ground ring.
Thus, the results of [34] heavily depend on the unitary conjugation calculus and
commutator calculus, as developed in [29, 37].

4.5 Universal localisation

Now something truly amazing will happen. Some two years ago the second
author noticed that the width of commutators is bounded by a universal con-
stant that depends on the type of the group alone, see [76]. Quite remarkably,
one can obtain a length bound that does not depend either on the dimension of
the ring, or on the length of the elementary factor.
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Theorem 19. Let G = G(Φ, R) be a Chevalley group of rank l ≥ 2. Then
there exists a natural number N = N(Φ) depending on Φ alone, such that each
commutator [x, y] of elements x ∈ G(Φ, R) and y ∈ E(Φ, R) is a product of at
most N elementary root unipotents.

What is remarkable here, is that there is no dependence on R whatsoever.
In fact, this bound applies even to infinite dimensional rings! Morally, it says
that in the groups of points of algebraic groups there are very few commutators.

Here is a very brief explanation of how it works. First of all, Chevalley
groups are representable functors, G(Φ, R) = Hom(Z[G], R), so that there is a
universal element g ∈ G(Φ, Z[G]), corresponding to id : Z[G] −→ Z[G], which
specialises to any element of the Chevalley group G(Φ, R) of the same type over
any ring.

But the elementary subgroup E(Φ, R) is not an algebraic group, so where
can one find universal elements?

The real know-how proposed by the second author consists in construc-
tion of the universal coefficient rings for the principal congruence subgroups
G(Φ, R, sR) (see the next section, for the definition), corresponding to the prin-
cipal ideals. It turns out that this is enough to carry through the same scheme
of the proof, with bounds that do not depend on the ring R.

5 Relative commutator width

In the absolute case the above results on commutator width are mostly
published. In this section we state relative analogues of these results which are
announced here for the first time.

5.1 Congruence subgroups

Usually, one defines congruence subgroups as follows. An ideal A � R de-
termines the reduction homomorphism ρA : R −→ R/A. Since G(Φ, ) is a
functor from rings to groups, this homomorphism induces reduction homomor-
phism ρA : G(Φ, R) −→ G(Φ, R/A).

• The kernel of the reduction homomorphism ρA modulo A is called the
principal congruence subgroup of level A and is denoted by G(Φ, R, A).

• The full pre-image of the centre of G(Φ, R/A) with respect to the reduction
homomorphism ρA modulo A is called the full congruence subgroup of level
A, and is denoted by C(Φ, R, A).

But in fact, without assumption that 2 ∈ R∗ for doubly laced systems, and
without assumption that 6 ∈ R∗ for Φ = G2, the genuine congruence subgroups
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should be defined in terms of admissible pairs of ideals (A, B), introduced by
Abe, [1, 4, 2, 3], and in terms of form ideals for symplectic groups. One of these
ideals corresponds to short roots and another one corresponds to long roots.

In [30] we introduced a more general notion of congruence subgroups, corre-
sponding to admissible pairs: G(Φ, R, A, B) and C(Φ, R, A, B), Not to overbur-
den the note with technical details, we mostly tacitly assume that 2 ∈ R∗ for
Φ = Bl,Cl, F4 and 6 ∈ R∗ for Φ = G2. Under these simplifying assumption one
has A = B and G(Φ, R, A, B) = G(Φ, R, A) and C(Φ, R, A, B) = C(Φ, R, A).
Of course, using admissible pairs/form ideals one can obtained similar results
without any such assumptions.

5.2 Relative elementary groups

Let A be an additive subgroup of R. Then E(Φ, A) denotes the subgroup of
E generated by all elementary root unipotents xα(ξ) where α ∈ Φ and ξ ∈ A.
Further, let L denote a nonnegative integer and let EL(Φ, A) denote the subset
of E(Φ, A) consisting of all products of L or fewer elementary root unipotents
xα(ξ), where α ∈ Φ and ξ ∈ A. In particular, E1(Φ, A) is the set of all xα(ξ),
α ∈ Φ, ξ ∈ A.

In the sequel we are interested in the case where A = I is an ideal of R. In
this case we denote by

E(Φ, R, I) = E(Φ, I)E(Φ,R)

the relative elementary subgroup of level I. As a normal subgroup of E(Φ, R)
it is generated by xα(ξ), α ∈ Φ, ξ ∈ A. The following theorem [74, 86, 88] lists
its generators as a subgroup.

Theorem 20. As a subgroup E(Φ, R, I) is generated by the elements

zα(ξ, ζ) = x−α(ζ)xα(ξ)x−α(−ζ),

where ξ ∈ I for α ∈ Φ, while ζ ∈ R.

It is natural to regard these generators as the elementary generators of
E(Φ, R, I). For the special linear group SL(n,OS), n ≥ 3, over a Dedekind ring
of arithmetic type Bernhard Liehl [54] has proven bounded generation of the
elementary relative subgroups E(n,OS , I) in the generators zij(ξ, ζ). What is
remarkable in his result, is that the bound does not depend on the ideal I. Also,
he established similar results for SL(2,OS), provided that O∗

S is infinite.

5.3 Standard commutator formula

The following result was first proven by Giovanni Taddei [83], Leonid Vaser-
stein [88] and Eiichi Abe [2, 3].
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Theorem 21. Let Φ be a reduced irreducible root system of rank ≥ 2, R
be a commutative ring, I � R be an ideal of R. In the case, where Φ = B2 or
Φ = G2 assume moreover that R has no residue fields F2 of 2 elements. Then
the following standard commutator formula holds

[
G(Φ, R), E(Φ, R, I)

]
=

[
E(Φ, R), C(Φ, R, I)

]
= E(Φ, R, I).

In fact, in [30] we established similar result for relative groups defined in
terms of admissible pairs, rather then single ideals. Of course, in all cases,
except Chevalley groups of type F4, it was known before, [8, 63, 18].

With the use of level calculations the following result was established by You
Hong [100], by analogy with the Alec Mason and Wilson Stothers [59, 56, 57, 58].
Recently the first, third and fourth authors gave another proof, of this result,
in the framework of relative localisation [38], see also [97, 40, 98, 31, 37, 41, 32,
39, 33, 76] for many further analogues and generalisations of such formulas.

Theorem 22. Let Φ be a reduced irreducible root system, rk(Φ) ≥ 2. Fur-
ther, let R be a commutative ring, and A, B � R be two ideals of R. Then

[E(Φ, R, A), G(Φ, R, B)] = [E(Φ, R, A), E(Φ, R, B)].

5.4 Generation of mixed commutator subgroups

It is easy to see that the mixed commutator [E(Φ, R, A), E(Φ, R, B)] is a
subgroup of level AB, in other words, it sits between the relative elementary sub-
group E(Φ, R, AB) and the corresponding congruence subgroup G(Φ, R, AB).

Theorem 23. Let Φ be a reduced irreducible root system, rk(Φ) ≥ 2. Fur-
ther, let R be a commutative ring, and A, B � R be two ideals of R. When
Φ = B2, G2, assume that R does not have residue field of 2 elements, and when
Φ = Cl, l ≥ 2, assume additionally that any a ∈ R is contained in the ideal
a2R + 2aR. Then

E(Φ, R, AB) ≤ [E(Φ, R, A), E(Φ, R, B)] ≤
[G(Φ, R, A), G(Φ, R, B)] ≤ G(Φ, R, AB).

It is not too difficult to construct examples showing that in general the
mixed commutator subgroup [E(Φ, R, A), E(Φ, R, B)] can be strictly larger than
E(Φ, R, AB). The first such examples were constructed by Alec Mason and
Wilson Stothers [59, 57] in the ring R = Z[i] of Gaussian integers.

In this connection, it is very interesting to explicitly list generators of the
mixed commutator subgroups [E(Φ, R, A), E(Φ, R, B)] as subgroups. From The-
orem 20 we already know most of these generators. These are zα(ξζ, η), where
ξ ∈ A, ζ ∈ B, η, ϑ ∈ R. But what are the remaining ones?
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orem 20 we already know most of these generators. These are zα(ξζ, η), where
ξ ∈ A, ζ ∈ B, η, ϑ ∈ R. But what are the remaining ones?
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In fact, using the Chevalley commutator formula it is relatively easy to
show that [E(Φ, R, A), E(Φ, R, B)] is generated by its intersections with the
fundamental SL2’s. Using somewhat more detailed analysis the first and the
fourth author established the following result, initially for the case of GL(n, R),
n ≥ 3, see [41] and then, jointly with the third author, for all other cases, see
[32, 39].

Theorem 24. Let R be a commutative ring with 1 and A, B be two ideals of
R. Then the mixed commutator subgroup

[
E(Φ, R, A), E(Φ, R, B)

]
is generated

as a normal subgroup of E(n, R) by the elements of the form

•
[
xα(ξ), x−α(η)xα(ζ)

]
,

•
[
xα(ξ), x−α(ζ)

]
,

• xα(ξζ),

where α ∈ Φ, ξ ∈ A, ζ ∈ B, η ∈ R.

Another moderate technical effort allows to make it into a natural candidate
for the set of elementary generators of [E(Φ, R, A), E(Φ, R, B)].

Theorem 25. Let R be a commutative ring with 1 and I, J be two ideals of
R. Then the mixed commutator subgroup

[
E(Φ, R, A), E(Φ, R, B)

]
is generated

as a group by the elements of the form

•
[
zα(ξ, η), zα(ζ, ϑ)

]
,

•
[
zα(ξ, η), z−α(ζ, ϑ)

]
,

• zα(ξζ, η),

where α ∈ Φ, ξ ∈ A, ζ ∈ B, η, ϑ ∈ R.

5.5 Relative commutator width

Now we are all set to address relative versions of the main problem. The two
following results were recently obtained by the second author, with his method
of universal localisation [76], but they depend on the construction of generators
in Theorems 20 and 25. Mostly, the preceding results were either published or
prepublished in some form, and announced at various conferences. These two
theorems are stated here for the first time.

Theorem 26. Let R be a commutative ring with 1 and let I �R, be an ideal
of R. Then there exists a natural number N = N(Φ) depending on Φ alone,
such that any commutator [x, y], where

x ∈ G(Φ, R, I), y ∈ E(Φ, R) or x ∈ G(Φ, R), y ∈ E(Φ, R, I)
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is a product of not more that N elementary generators zα(ξ, ζ), α ∈ Φ, ξ ∈ I,
ζ ∈ R.

Theorem 27. Let R be a commutative ring with 1 and let A, B � R, be
ideals of R. there exists a natural number N = N(Φ) depending on Φ alone,
such that any commutator

[x, y], x ∈ G(Φ, R, A), y ∈ E(Φ, R, B)

is a product of not more that N elementary generators listed in Theorem 25.

Quite remarkably, the bound N in these theorems does not depend either on
the ring R, or on the choice of the ideals I, A, B. The proof of these theorems is
not particularly long, but it relies on a whole bunch of universal constructions
and will be published in ??. From the proof, it becomes apparent that similar
results hold also in other such situations: for any other functorial generating
set, for multiple relative commutators [41, 39], etc.

6 Loose ends

Let us mention some positive results on commutator width and possible
further generalisations.

6.1 Some positive results

There are some obvious bounds for the commutator width that follow from
unitriangular factorisations. For the SL(n, R) the following result was observed
by van der Kallen, Dennis and Vaserstein. The proof in general was proposed
by Nikolai Gordeev and You Hong in 2005, but is still not published, as far as
we know.

Theorem 28. Let rk(Φ) ≥ 2. Then for any commutative ring R an element
of U(Φ, R) is a product of not more than two commutators in E(Φ, R).

Combining the previous theorem with Theorem 8 we get the following corol-
lary.

Corollary 4. Let rk(Φ) ≥ 2 and let R be a ring such that sr(R) = 1. Then
the any element of E(Φ, R) is a product of ≤ 6 commutators.

This focuses attention on the following problem.

Problem 3. Find the shortest factorisation of E(Φ, R) of the form

E = UU−UU− . . . U±.
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Let us reproduce another result from the paper by Andrei Smolensky, Sury
and the third author [96]. It is proven similarly to Theorem 8, but uses Cooke—
Weinberger [17] as induction base. Observe that it depends on the Generalised
Riemann’s Hypothesis, which is used to prove results in the style of Artin’s con-
jecture on primitive roots in arithmetic progressions. Lately, Maxim Vsemirnov
succeeded in improving bounds and in some cases eliminating dependence on
GRH. In particular, Cooke—Weinberger construct a division chain of length 7
in the non totally imaginary case, the observation that it can be improved to a
division chain of length 5 is due to Vsemirnov [99]. Again, in the form below,
with G(Φ,OS) rather than E(Φ,OS), it relies on the almost positive solution of
the congruence subgroup problem [10, 60].

Theorem 29. Let R = OS be a Dedekind ring of arithmetic type with infi-
nite multiplicative group. Then under the Generalised Riemann Hypothesis the
simply connected Chevalley group Gsc(Φ,OS) admits unitriangular factorisation
of length 9,

Gsc(Φ,OS) = UU−UU−UU−UU−U.

In the case, where OS has a real embedding, it admits unitriangular factorisation
of length 5,

Gsc(Φ,OS) = UU−UU−U.

Corollary 5. Let rk(Φ) ≥ 2 and let OS be a Dedekind ring of arithmetic
type with infinite multiplicative group. Then the any element of Gsc(Φ,OS) is a
product of ≤ 10 commutators. In the case, where OS has a real embedding, this
estimate can be improved to ≤ 6 commutators.

6.2 Conjectures concerning commutator width

We believe that solution of the following two problems is now at hand. In
Section 2 we have already cited the works of Frank Arlinghaus, Leonid Vaser-
stein, Ethel Wheland and You Hong [90, 91, 101, 5], where this is essentially
done for classical groups, over rings subject to sr(R) = 1 or some stronger
stability conditions.

Problem 4. Under assumption sr(R) = 1 prove that any element of ele-
mentary group Ead(Φ, R) is a product of ≤ 2 commutators in Gad(Φ, R).

Problem 5. Under assumption sr(R) = 1 prove that any element of ele-
mentary group E(Φ, R) is a product of ≤ 3 commutators in E(Φ, R).

It may well be that under this assumption the commutator width of E(Φ, R)
is always ≤ 2, but so far we were unable to control details concerning semisimple
factors.
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It seems, that one can apply the same argument to higher stable ranks.
Solution of the following problem would be a generalisation of [19, Theorem 4].

Problem 6. If the stable rank sr(R) of R is finite, and for some m ≥ 2
the elementary linear group E(m, R) has bounded word length with respect to
elementary generators, then for all Φ of sufficiently large rank any element of
E(Φ, R) is a product of ≤ 4 commutators in E(Φ, R).

Problem 7. Let R be a Dedekind ring of arithmetic type with infinite mul-
tiplicative group. Prove that any element of Ead(Φ, R) is a product of ≤ 3
commutators in Gad(Φ, R).

Some of our colleagues expressed belief that any element of SL(n, Z), n ≥ 3,
is a product of ≤ 2 commutators. However, for Dedekind rings with finite multi-
plicative groups, such as Z, at present we do not envisage any obvious possibility
to improve the generic bound ≤ 4 even for large values of n. Expressing ele-
ments of SL(n, Z) as products of 2 commutators, if it can be done at all, should
require a lot of specific case by case analysis.

6.3 The group SL(2, R): improved generators

One could also mention the recent paper by Leonid Vaserstein [89] which
shows that for the group SL(2, R) it is natural to consider bounded generation
not in terms of the elementary generators, but rather in terms of the generators
of the pre-stability kernel Ẽ(2, R). In other words, one should also consider
matrices of the form (e + xy)(e + yx)−1.

Theorem 30. The group SL(2, Z) admits polynomial parametrisation of
total degree ≤ 78 with 46 parameters.

The idea is remarkably simple. Namely, Vaserstein observes that SL(2, Z)
coincides with the pre-stability kernel Ẽ(2, Z). All generators of the group
Ẽ(2, Z), not just the elementary ones, admit polynomial parametrisation. The
additional generators require 5 parameters each.

It only remains to verify that each element of SL(2, Z) has a small length,
with respect to this new set of generators. A specific formula in [89] expresses an
element of SL(2, Z) as a product of 26 elementary generators and 4 additional
generators, which gives 26 + 4 · 5 = 46 parameters mentioned in the above
theorem.

6.4 Bounded generation and Kazhdan property

The following result is due to Yehuda Shalom [70], Theorem 8, see also
[71, 46].

163



163

Let us reproduce another result from the paper by Andrei Smolensky, Sury
and the third author [96]. It is proven similarly to Theorem 8, but uses Cooke—
Weinberger [17] as induction base. Observe that it depends on the Generalised
Riemann’s Hypothesis, which is used to prove results in the style of Artin’s con-
jecture on primitive roots in arithmetic progressions. Lately, Maxim Vsemirnov
succeeded in improving bounds and in some cases eliminating dependence on
GRH. In particular, Cooke—Weinberger construct a division chain of length 7
in the non totally imaginary case, the observation that it can be improved to a
division chain of length 5 is due to Vsemirnov [99]. Again, in the form below,
with G(Φ,OS) rather than E(Φ,OS), it relies on the almost positive solution of
the congruence subgroup problem [10, 60].

Theorem 29. Let R = OS be a Dedekind ring of arithmetic type with infi-
nite multiplicative group. Then under the Generalised Riemann Hypothesis the
simply connected Chevalley group Gsc(Φ,OS) admits unitriangular factorisation
of length 9,

Gsc(Φ,OS) = UU−UU−UU−UU−U.

In the case, where OS has a real embedding, it admits unitriangular factorisation
of length 5,

Gsc(Φ,OS) = UU−UU−U.

Corollary 5. Let rk(Φ) ≥ 2 and let OS be a Dedekind ring of arithmetic
type with infinite multiplicative group. Then the any element of Gsc(Φ,OS) is a
product of ≤ 10 commutators. In the case, where OS has a real embedding, this
estimate can be improved to ≤ 6 commutators.

6.2 Conjectures concerning commutator width

We believe that solution of the following two problems is now at hand. In
Section 2 we have already cited the works of Frank Arlinghaus, Leonid Vaser-
stein, Ethel Wheland and You Hong [90, 91, 101, 5], where this is essentially
done for classical groups, over rings subject to sr(R) = 1 or some stronger
stability conditions.

Problem 4. Under assumption sr(R) = 1 prove that any element of ele-
mentary group Ead(Φ, R) is a product of ≤ 2 commutators in Gad(Φ, R).

Problem 5. Under assumption sr(R) = 1 prove that any element of ele-
mentary group E(Φ, R) is a product of ≤ 3 commutators in E(Φ, R).

It may well be that under this assumption the commutator width of E(Φ, R)
is always ≤ 2, but so far we were unable to control details concerning semisimple
factors.

162

It seems, that one can apply the same argument to higher stable ranks.
Solution of the following problem would be a generalisation of [19, Theorem 4].

Problem 6. If the stable rank sr(R) of R is finite, and for some m ≥ 2
the elementary linear group E(m, R) has bounded word length with respect to
elementary generators, then for all Φ of sufficiently large rank any element of
E(Φ, R) is a product of ≤ 4 commutators in E(Φ, R).

Problem 7. Let R be a Dedekind ring of arithmetic type with infinite mul-
tiplicative group. Prove that any element of Ead(Φ, R) is a product of ≤ 3
commutators in Gad(Φ, R).

Some of our colleagues expressed belief that any element of SL(n, Z), n ≥ 3,
is a product of ≤ 2 commutators. However, for Dedekind rings with finite multi-
plicative groups, such as Z, at present we do not envisage any obvious possibility
to improve the generic bound ≤ 4 even for large values of n. Expressing ele-
ments of SL(n, Z) as products of 2 commutators, if it can be done at all, should
require a lot of specific case by case analysis.

6.3 The group SL(2, R): improved generators

One could also mention the recent paper by Leonid Vaserstein [89] which
shows that for the group SL(2, R) it is natural to consider bounded generation
not in terms of the elementary generators, but rather in terms of the generators
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Theorem 31. Let R be an m-generated commutative ring, n ≥ 3. Assume
that E(n, R) has bounded width C in elementary generators. Then E(n, R) has
property T . In an appropriate generating system S the Kazhdan constant is
bounded from below

K(G, S) ≥ 1

C · 22n+1
.

Problem 8. Does the group SL(n, Z[x]), n ≥ 3, has bounded width with
respect to the set of elementary generators?

If this problem has positive solution, then by Suslin’s theorem and Shalom’s
theorem the groups SL(n, Z[x]) have Kazhdan property T . Thus,

Problem 9. Does the group SL(n, Z[x]), n ≥ 3, have Kazhdan property T?

If this is the case, one can give a uniform bound of the Kazhdan constant
of the groups SL(n,O), for the rings if algebraic integers. It is known that
these group have Kazhdan property, but the known estimates depend on the
discriminant of the ring O.

Problem 10. Prove that the group SL(n, Q[x]) does not have bounded width
with respect to the elementary generators.

It is natural to try to generalise results of Bernhard Liehl [54] to other
Chevalley groups. The first of the following problems was stated by Oleg Tavgen
in [84]. As always, we assume that rk(Φ) ≥ 2. Otherwise, Problem 12 is open
for the group SL(2,OS), provided that the multiplicative group O∗

S is infinite.

Problem 11. Prove that over a Dedekind ring of arithmetic type the relative
elementary groups E(Φ,OS , I) have bounded width with respect to the elemen-
tary generators zα(ξ, ζ), with a bound that does not depend on I.

Problem 12. Prove that over a Dedekind ring of arithmetic type the mixed
commutator subgroups [E(Φ,OS , A), E(Φ,OS , B)] have bounded width with re-
spect to the elementary generators constructed in Theorem 25, with a bound that
does not depend on A and B.

6.5 Not just commutators

It is very challenging to understand, to which extent such behaviour is typical
for more general classes of group words. There are a lot of recent results showing
that the verbal length of the finite simple groups is strikingly small [68, 69, 49,
50, 53, 27]. In fact, under some natural assumptions for large finite simple
groups this verbal length is 2. We do not expect similar results to hold for rings
other than the zero-dimensional ones, and some arithmetic rings of dimension 1.

Powers are a class of words in a certain sense opposite to commutators.
Alireza Abdollahi suggested that before passing to more general words, we
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should first look at powers.

Problem 13. Establish finite width of powers in elementary generators, or
lack thereof.

An answer – in fact, any answer! – to this problem would be amazing.
However, we would be less surprised if for rings of dimension ≥ 2 the verbal
maps in G(R) would have very small images.
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Giovanni and Carlo Scoppola for an invitation to give a talk on commutator
width at the Conference in Porto Cesareo, which helped us to focus thoughts in
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Tôhoku Math. J., 36 (1986), n. 5, 219–230.

[89] L. N. Vaserstein: Polynomial parametrization for the solution of Diophantine equations
and arithmetic groups, Ann. Math., bf 171 (2010), n. 2, 979–1009.

[90] L. N. Vaserstein, E. Wheland: Factorization of invertible matrices over rings of stable
rank one, J. Austral. Math. Soc., Ser. A, 48 (1990), 455–460.

[91] L. N. Vaserstein, E. Wheland: Commutators and companion matrices over rings of
stable rank 1, Linear Algebra Appl., 142 (1990), 263–277.

[92] N. Vavilov: Structure of Chevalley groups over commutative rings, Proc. Conf. Nonas-
sociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London et
al., 1991, 219–335.

[93] N. Vavilov: A third look at weight diagrams, Rend. Sem. Mat. Univ. Padova., 104

(2000), n. 1, 201–250.

[94] N. A. Vavilov: Can one see the signs of the structure constants?, St. Petersburg Math.
J., 19 (2008), n. 4, 519–543.

[95] N. Vavilov, E. Plotkin: Chevalley groups over commutative rings I: Elementary cal-
culations, Acta Applic. Math., 45 (1996), 73–113.

[96] N. A. Vavilov, A. V. Smolensky, B. Sury: Unitriangular factorisations of Chevalley
groups, J. Math. Sci., 183 (2012), no. 5, 584–599.

169



170

[97] N. A. Vavilov, A. V. Stepanov: Standard commutator formula, Vestnik St.-Petersburg
Univ., ser.1, 41 (2008), n. 1, 5–8.

[98] N. A. Vavilov, A. V. Stepanov: Standard commutator formulae, revisited, Vestnik
St.-Petersburg State Univ., ser.1, 43 (2010), no. 1, 12–17.

[99] M. Vsemirnov: Short unitriangular factorisations of SL2

(
Z

[1

p

])
, Quart. J. Math. Ox-

ford, (2012), 1–15, to appear.

[100] Hong You: On subgroups of Chevalley groups which are generated by commutators, J.
Northeast Normal Univ., 2 (1992), 9–13.

[101] Hong You: Commutators and unipotents in symplectic groups, Acta Math. Sinica, New
Ser., 10 (1994), 173–179.

170



[97] N. A. Vavilov, A. V. Stepanov: Standard commutator formula, Vestnik St.-Petersburg
Univ., ser.1, 41 (2008), n. 1, 5–8.

[98] N. A. Vavilov, A. V. Stepanov: Standard commutator formulae, revisited, Vestnik
St.-Petersburg State Univ., ser.1, 43 (2010), no. 1, 12–17.

[99] M. Vsemirnov: Short unitriangular factorisations of SL2

(
Z

[1

p

])
, Quart. J. Math. Ox-

ford, (2012), 1–15, to appear.

[100] Hong You: On subgroups of Chevalley groups which are generated by commutators, J.
Northeast Normal Univ., 2 (1992), 9–13.

[101] Hong You: Commutators and unipotents in symplectic groups, Acta Math. Sinica, New
Ser., 10 (1994), 173–179.

170



Finito di stampare nel mese di Ottobre 2012
presso lo stabilimento tipolitografico della torgraf 

S.P. 362 km. 15,300 - Zona Industriale • 73013 GALATINA (Lecce)
Telefono +39 0836.561417 • Fax +39 0836.569901

e-mail: stampa@torgraf.it


