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Cocharacters of bilinear mappings and graded matrices

Stefania Aquè
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90123 Palermo, Italy

E-mail: aque@math.unipa.it

Let Mk(F ) be the algebra of k × k matrices over a field F of characteristic 0.
If G is any group, we endow Mk(F ) with the elementary grading induced by the
k-tuple (1, . . . , 1, g) where g ∈ G, g2 6= 1. Then the graded identities of Mk(F )
depending only on variables of homogeneous degree g and g−1 are obtained by a
natural translation of the identities of bilinear mappings. We study such identities
by means of the representation theory of the symmetric group. We act with two copies
of the symmetric group on a space of multilinear graded polynomials of homogeneous
degree g and g−1 and we find an explicit decomposition of the corresponding graded
cocharacter into irreducibles.

Automorphisms of extremal self-dual codes

Martino Borello

I will present some techniques developed to study the automorphism group of
certain binary linear codes, namely the extremal self-dual ones. These techniques
involve some modular representation theory and actions of permutation groups on
finite combinatorial structures. The usual problem is to find a relatively small set of
representatives for the action of a group on a set of codes and then do an exhaustive
test on such set with Magma checking properties as the minimum distance and the
self-duality. I will present some applications of these method to the study of the
automorphism group of the putative self-dual extremal code of length 72, which is a
long-standing open problem of classical coding theory.

[1] M. Borello, The automorphism group of a self-dual [72; 36; 16] binary code does not
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Symmetric Units and Group Identities in Group Algebras

Victor Bovdi

Let U(A) be the group of units of an algebra A (over a field F ) with involution
∗. Let S∗(A) = {u ∈ U(A) | u = u∗} be the set of symmetric units of A.

Algebras with involution have been actively investigated. In these algebras there
are many symmetric elements, for example: x+ x∗ and xx∗ for an arbitrary element
x ∈ A. This raises natural questions about properties of the symmetric elements and
symmetric units. One such question is whether the symmetric units satisfy a group
identity in the group algebra. A structure theorem of algebras with involution whose
symmetric elements satisfy a polynomial identity was obtained earlier in [1].

In [3] we classified the cases when the symmetric units commute (i.e. S∗(KG)
satisfies the group identity f(x, y) = x−1y−1xy) in the modular group algebra KG of
a locally finite p-group G. The solution of this question for integral group rings and
for some modular group rings of arbitrary groups over rings was obtained in [4, 5].

A. Giambruno, S.K. Sehgal and A. Valenti in [6] classified the group algebras of
torsion groups over infinite fields of odd characteristic, whose symmetric units satisfy
a group identity. An extension of this classification was given for the group algebra
KG of an arbitrary group G over a field K of odd characteristic in [2]. We continue
this investigation for fields of even characteristic.
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Groups with every subgroup ascendant by finite

Sergio Camp-Mora

We will call H an ascendant-by-finite subgroup of a group G if there exists a
subgroup K of H which is ascendant in G and such that the index | H : K | is finite.

It is proved that a locally finite group with every subgroup ascendant-by-finite
is necessarily a finite extension of a locally nilpotent group. As a consequence, it is
shown that those groups are a finite extension of a Gruenberg group.

Previously, it had been proved that the locally finite groups with every subgroup
normal-by-finite are abelian-by-finite. Moreover locally finite groups with every sub-
group permutable-by-finite are modular-by-finite.

On groups with given absolute central factor group

M. Chaboksavar* 1

Department of Mathematics, Mashhad Branch, Islamic Azad University,
Mashhad, Iran

M. Farrokhi D. G.
Department of Pure Mathematics, Ferdowsi University of Mashhad,

Mashhad, Iran

Abstract

In this paper we classify the finite groups G whose absolute central factors are cyclic,
or isomorphic to Zp × Zp and Q8.

1. Introduction

The study of groups whose central factor groups are given is an important problem
in theory of groups. Baer [1] studied the structure of groups whose central factor
groups are abelian. In 1964, Hall and Senior [4] introduced the notion of capable
groups. A group G is called capable if there exists a group E such that G ∼= E/Z(E).

In 1993, Hegarty [6] defined the autocommutator of groups. Let G be a group and
A = Aut(G) be the group of automorphisms of G. Then for each x ∈ G and α ∈ A,
[x, α] = x−1xα is the autocommutator of x and α. Indeed, the autocommutators are
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a generalization of commutators. We know that for every two elements x and y of
G, [x, y] = x−1y−1xy = xxϕy , where xϕy = y−1xy. So, autocommutator is just a
commutator in which inner automorphisms is replaced by an automorphisms. This
leads us to generalize the center of groups by means of autocommutators. The set

L(G) = {g ∈ G : [g, α] = 1, α ∈ Aut(G)}

is a characteristic central subgroup of G and called the absolute center of G.
Recently studying of autocommutatrs and absolute center of groups are interested.

In this talk, we classify some finite groups whose absolute central factors have a given
structure.

The above remark leads one to suspect that when the structure of absolute central
factor G/L(G) is very simple (and by very simple we mean that G/L(G) ∼=< 1 > or
G/L(G) is cyclic), the structure of G is as follows:
Theorem 1. Assume that G is a finite group such that G/L(G) ∼=< 1 >. Then it is
clear that G is the trivial group or G ∼= Z2.
A well-know result in theory of groups states that a group has never a non-trivial
cyclic central factor. In more details, there is no nontrivial cyclic capable group.
However, the following theorem shows that this is not the case for absolute central
factor groups.
Theorem 2. A finite group G is cyclic if and only if G/L(G) is cyclic.
It is clear that in the concept of capable groups, there is no solution for the equation
X/Z(X) ∼= G. For example we can not find a group X such that X/Z(X) ∼= Q8. We
will show that there is no group G such that G/L(G) ∼= Q8.
In the next section, we shall discuss on the groups G such that G/L(G) is isomorphic
to Zp × Zp for some prime p and Q8

2. Main results

Clearly, there are infinitely many groups G such that G/Z(G) ∼= Zp × Zp for a given
prime p and there is no group such that G/Z(G)congQ8. Indeed all groups A ×H,
where A is an abelian group and H is a group such that H/Z(H) ∼= Zp × Zp satisfy
the mentioned property. The surprising news is that for absolute centers the situation
is completely different from that of centers as the following result shows.
Theorem 3. Let G be a finite group such that G/L(G) ∼= Zp × Zp. Then

G ∼=

Zp × Zp,
Zp × Zp × Z2, p is odd,
Z4 × Z2,
D8,
Q8.

Theorem 4. There is no group G such that G/L(G) ∼= Q8.
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Incidence Matrices, Invariant Factors and Orbits of a permutation
group

Francesca Dalla Volta

Let 0 ≤ t, k ≤ n be integers with t + k ≤ n and let Ω be a set of size n. We
denote by Mn

t,k the Incidence Matrix of t- versus k-subsets of Ω; Mn
t,k is the matrix

with rows indexed by t-subsets x, columns indexed by k-subsets y and (x, y)-entry
equal to 1 if x ⊆ y or x ⊇ y, and equal to 0 otherwise. In this talk I will be interested
in some results obtained together with Johannes Siemons about invariant factors of
this matrix (that is the Smith form of it) and some applications to Designs and to
Orbits of a Permutation Group on Ω.



On the ring of inertial endomorphisms of an abelian group

Ulderico Dardano and Silvana Rinauro

In the study of soluble groups with many inert subgroups (see [2], [4]) it seems
relevant the consideration of inertial endomorphisms (see [1], [3]) of an abelian group
(A,+), that is endomorphisms ϕ with the property:

∀X ≤ A |ϕ(X) +X/X| <∞.

Clearly all ”multiplications” and finitary endomorphisms have this property. A less
trivial example of inertial endomorphism is 0⊕ 1

2 on A = Z(2)ω ⊕Q2. More compli-
cated examples will be exhibited.

In this talk we describe the ring of inertial endomorphisms and consider the group of
invertible ones.
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Groups with finiteness conditions on subgroups of inifnte rank

Maria De Falco

A group G is said to havefinite Prüfer rank r if every finitely generated subgroup
of G can be generated by at most r elements, and r is the least positive integer with
such property. We discuss here the imposition of certain embedding properties to the
subgroups of infinite rank of a soluble group.



Maximal subgroups of finite groups and Sylow permutability 2

Ramon Esteban-Romero 3

In this talk we will consider only finite groups. We say that a subgroup H of a
group G permutes with a subgroup K of G if HK is a subgroup of G. The subgroup
H is said to be permutable (respectively, S-permutable) if it permutes with all sub-
groups (respectively, all Sylow subgroups) of G. Finite groups in which permutability
(respectively, S-permutability) is a transitive relation are called PT-groups (respec-
tively, PST-groups). The classes of PT-groups and PST-groups, together with the
class of T-groups or groups in which normality is transitive, have been object of an
extensive study, with many characterisations available. Kaplan [1] presented some
new characterisations of soluble T-groups in terms of maximal subgroups. The aim
of this talk is to present PT- and PST-versions of Kaplan’s results in terms of the
containment of non-permutable (respectively, non-S-permutable) subgroups in non-
normal maximal subgroups. This enables a better understanding of the relations
between these classes.

The results of this talk appear in [2].
Mathematics Subject Classification (2010): 20D05, 20D10, 20E15, 20E28, 20F16
Keywords: finite groups, permutability, Sylow-permutability, maximal subgroups,
supersolubility.
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Computing generators of the unit group of an integral abelian
group ring

Paolo Faccin

We describe an algorithm for obtaining generator of the unit group of the integral
group ring ZG of a finite abelian group G. We used our implementation in MAGMA

2This work has been supported by the research grant MTM2010-19983-C03-01 from MICINN,
Spain.

3Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camı́
de Vera, s/n, 46022 València, Spain, email: resteban@mat.upv.es; current address: Departa-
ment d’Àlgebra, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain, email:
Ramon.Esteban@uv.es



of this algorithm to compute the unit groups of ZG for G of order up to 110. In
particular for those cases we obtained the index of the group of Hoechsmann units
in the full unit group. At the end of the paper we describe an algorithm for more
general problem of finding generators of an arithmetic group corresponding to a di-
agonalisable algebraic group.

(Joint work with Willem De Graaf and Wilhelm Plesken, appeared in Journal of
Algebra 373, 441-373, 2013)

Group rings of finite strongly monomial groups: central units and
primitive idempotents

Inneke Van Gelder

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

(joint work with Eric Jespers, Gabriela Olteanu and Ángel del Ŕıo)

For a finite group G we denote by U(ZG) the unit group of the integral group
ring ZG. Its group of central units is denoted by Z(U(ZG)).

In [1] we have proved that the group generated by the so-called generalized Bass
units contains a subgroup of finite index in Z(U(ZG)) for any arbitrary finite strongly
monomial group G. No multiplicatively independent set of generators for such a
subgroup was obtained. We call such a set a virtual basis. However, we obtained
an explicit description of a virtual basis of Z(U(ZG)) when G is a finite abelian-
by-supersolvable group (and thus a strongly monomial group) such that every cyclic
subgroup of order not a divisor of 4 or 6 is subnormal in G. We present an extension
of these results on the construction of a virtual basis of Z(U(ZG)) to a class of finite
strongly monomial groups containing the metacyclic groups G = Cqm o Cpn with
p and q different primes and Cpn acting faithfully on Cqm . Our proof makes use
of strong Shoda pairs and the description of the Wedderburn decomposition of QG
obtained by Olivieri, del Ŕıo and Simón in [2].

In [3] a complete set of matrix units (and in particular, of orthogonal primitive
idempotents) of each simple component in the rational group algebra QG is described
for finite nilpotent groups G. As an application one obtains a factorization of a
subgroup of finite index of U(ZG) into a product of three nilpotent groups, and one
explicitly constructs finitely many generators for each of these factors. We present a
description of a complete set of matrix units for a class of finite strongly monomial
groups containing the finite metacyclic groups Cqm o Cpn with Cpn acting faithfully
on Cqm . For the latter groups we obtain as an application of these results (and



the earlier results on central units) again an explicit construction of finitely many
generators of three nilpotent subgroups that together generate a subgroup of finite
index in U(ZG).

[1] E. Jespers; Á del Ŕıo; G. Olteanu; I. Van Gelder, Central units of integral
group rings, Proc. Amer. Math. Soc. (in press);

[2] A. Olivieri; Á. del Ŕıo; J. J. Simón, On monomial characters and central idem-
potents of rational group algebras, Communications in Algebra 32 (2004), no. 4, 1531
- 1550;

[3] HE. Jespers; G. Olteanu; Á. del Ŕıo, Rational group algebras of finite groups:
from idempotents to units of integral group rings, Algebr. Represent. Theory 15 (2012),
no. 2, 359 - 377.

Some results on tensor nilpotent groups

Elaheh Mohammadzadeh
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Tensor analogues of right 2-Engel elements in groups were introdused by Biddle
and Kappe. P.Moravec presented some results on tensor analogues of 2-Engel groups.
In this paper first we introduce the concept of tensor nilpotent groups, then we see
in 3⊗-Engle groups, < x, xy > is tensor nilpotent of class at most 2, for all x, y ∈ G.
Also with additional conditions we prove that if yx = a then 〈a, ay〉 is tensor nilpotent
of class 2.
Keyword and phrases: nilpotent, Engel group, non-abelian tensor product.

[1] D.P. Biddle, L.C. Kappe R.F. Morse, On subgroups related to the tensor center. Glasg.
Math. J. 42 (2003). no 2, 323-332;
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results, Department of Mathematics facuality of arts national university of ireland gal-
way. 1998;
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On Lewin’s problem

Jairo Zacarias Goncalves

University of Sao Paulo, Brazil

We address the following question, attributed to J. Lewin: Let kG be the group
algebra of the nonabelian torsion free nilpotent group G, and let D = Q(kG) be its
field of fractions. If x and y are two noncommuting elements of G, then 1 + x and
1 + y generate a free noncyclic subgroup in D.

We start recalling some background, and a former solution obtained by Goncalves,
Mandel and Shirvani in J. Algebra, 1999. We finish giving a recent extension, due to
Goncalves and Passman.

Weyl groups of fine gradings on e6

Valerio Guido

Given the Cartan decomposition of a semisimple complex Lie algebra, the auto-
morphism group of its root system is the so-called extended Weyl group that gener-
alizes the well-known Weyl group generated by reflections through the hyperplanes
orthogonal to the roots. Because of the usefulness of such a decomposition in study-
ing the properties of the algebraic structure, some other partitions of Lie algebras
have been investigated together with their automorphisms, but it was in 1989 that a
systematic study of Lie gradings started in an article by J. Patera and H. Zassenhaus
[1].



Let L be a Lie algebra over an algebraically closed field of characteristic zero and
let G be an abelian group. A G-grading on L is a decomposition into subspaces
Γ : L = ⊕g∈G Lg such that LgLh ⊂ Lg+h for all g, h ∈ G. The Weyl group of Γ is the
quotient of two subgroups of Aut(L): the subgroup generated by the automorphisms
that permute the components Lg and the subgroup of the automorphisms that sta-
bilize them. The Cartan decomposition is a very special fine grading (i.e., it cannot
be refined) whose Weyl group coincides with the classical extended Weyl group of
the roots. The aim of this talk is to describe the Weyl groups of fine gradings of the
exceptional Lie algebra e6. These gradings have been recently classified by C. Draper
and A. Viruel in [2].
This is a work in preparation jointly with D. Aranda and C. Draper.

[1] J. Patera and H. Zassenhaus, On Lie gradings. I, Linear Algebra and its Applications
112 (1989), 87 – 159;

[2] C. Draper and A. Viruel, Fine gradings on e6 preprint arXiv: 1207.6690v1 .

Discontinuous actions on H2 ×H2

Ann Kiefer

The main goal is the investigation on the unit group of an order O in a rational
group ring QG of a finite group G. In particular we are interested in the unit group
of ZG. For many finite groups G a specific finite set B of generators of a subgroup
of finite index in U(ZG) has been given. The only groups G excluded in this result
are those for which the Wedderburn decomposition of the rational group algebra QG
has a simple component that is either a non-commutative division algebra different
from a totally definite quaternion algebra or a 2× 2 matrix ring M2(D), where D is
either Q, a quadratic imaginary extension of Q or a totally definite rational division
algebra H(a; b; Q).

In some of these cases, up to commensurability, the unit group acts discontinu-
ously on a direct poduct of hyperbolic 2- or 3-spaces. The aim is to generalize the
theorem of Poincaré on fundamental domains and group presentations to these cases.
For the moment we have done this for the Hilbert Modular Group, which acts on
H2 ×H2, in joint work with Á. del Ŕıo, E. Jespers.



The Automorphism Group of Some Matrix Rings

Feride Kuzucuoğlu
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Let K be an associative ring with identity and let NT (n,K) be the ring of all
lower nil triangular n × n matrices over K. A ring R is called a radical (Jacobson)
ring if (R, ◦) is a group (adjoint group) with respect to a ◦ b = a+ b+ ab. Let AutR
be the automorphism group of any radical ring R. It coincides with the intersection
of the automorphism group of the adjoint group G(R) and the automorphism group
of the associated Lie ring Λ(R) of R.

For arbitrary associative ring K with identity automorphism groups of NTn(K),
G(NTn(K)) and Λ(NTn(K)) were described by Levchuk. Let Mn(J) be the ring of
all n× n matrices over an ideal J of K and

Rn(K,J) := NTn(K) +Mn(J)

Our aim is to describe the automorphism group AutRn(K,J) for arbitrary K and
quasi-regular ideal J and derivations of Rn(K,J).

Varieties of algebras of polynomial growth

Daniela La Mattina

Let A be an associative algebra over a field F of characteristic zero and let cn(A),
n = 1, 2, . . ., be its sequence of codimensions. It is well known that the sequence of
codimensions of a PI-algebra either grows exponentially or is polynomially bounded.

In this note we are interested in the case of polynomial growth. For this case a cel-
ebrated theorem of Kemer characterizes the algebras whose sequence of codimensions
is polynomially bounded as follows. Let G be the infinite dimensional Grassmann
algebra over F and let UT2 be the algebra of 2× 2 upper triangular matrices. Then
cn(A), n = 1, 2, . . ., is polynomially bounded if and only if G, UT2 /∈ var(A), where
var(A) denotes the variety of algebras generated by A.

In the setting of G-graded algebras, where G is a finite group, the sequence of
graded codimensions is polynomially bounded if and only if vargr(A) does not contain
a finite list of G-graded algebras. The list consists of group algebras of groups of



order a prime number, the infinite dimensional Grassmann algebra and the algebra
of 2 × 2 upper triangular matrices with suitable gradings. Such algebras generate
the only varieties of G-graded algebras of almost polynomial growth, i.e., varieties of
exponential growth such that any proper subvariety grows polynomially.

In this note, we completely classify all subvarieties of the G-graded varieties of
almost polynomial growth by giving a complete list of finite dimensional G-graded
algebras generating them.

Letterplace approach to (group) algebras

Roberto La Scala

Let A = 〈x1, . . . , xn| r1 = 0, . . . , rm = 0〉 be a finitely presented (noncommuta-
tive) algebra, say the group algebra KG of a finitely presented group. If one wants
to know if A is finite dimensional (G is finite) or to compute its growth, GKdim,
etc, one approach consists in computing a Gröbner basis of the two-sided ideal
I = 〈r1, . . . , rm〉 of the free associative algebra K 〈x1, . . . , xn〉 and then to count
in the set of normal words. A next step may consist in applying the “letterplace
correspondence”, introduced in [1, 2] for the graded case, that transforms I (and
related computations) into a N -invariant ideal J of the free commutative N-algebra
K {x1, . . . , xn}, that is a free object in the category of finitely generated commutative
algebras endowed with the action (by endomorphisms) of the monoid (N,+) of natural
numbers. In other words, we can modelize a finitely presented (non-commutative) al-
gebra A = K 〈x1, . . . , xn〉 /I by means of a finitely presented commutative N-algebra
K {x1, . . . , xn} /J . In this talk we expose these ideas with special emphasis to the
generalization obtained in [3] of the letterplace correspondence for non-graded ideals
that especially is the case of group algebras.

[1] La Scala, R.; Levandovskyy, V., Letterplace ideals and non-commutative Gröbner
bases. J. Symbolic Comput., 44 (2009), 1374-1393.

[2] La Scala, R.; Levandovskyy, V., Skew polynomial rings, Gröbner bases and the let-
terplace embedding of the free associative algebra, J. Symbolic Comput., 48 (2013),
110-131.

[3] La Scala, R., Extended letterplace correspondence for nongraded noncommutative ide-
als and related algorithms, preprint (2012), 1-20. arXiv:1206.6027.



A restriction on centralizers in finite groups

Gustavo A. Fernández-Alcober, Leire Legarreta, Antonio Tortora, and Maria Tota

For a given m ≥ 1, we consider the finite non-abelian groups G for which
|CG(g) : 〈g〉| ≤ m for every g ∈ G r Z(G). We show that the order of G can
be bounded in terms of m and the largest prime divisor of the order of G. Our
approach relies on dealing first with the case where G is a non-abelian finite p-group.
In that situation, if we take m = pk to be a power of p, we show that |G| ≤ p2k+2

with the only exception of Q8. This bound is best possible, and shows that the order
of G can be bounded by a function of m alone in the case of nilpotent groups.

Matematika Saila, Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
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E-mail address: mtota@unisa.it

Dipartimento di Matematica, Università di Salerno, Salerno, Italy
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Ekedahl invariants for finite groups

Ivan Martino

In 2009 T. Ekedahl introduced some cohomological invariants for affine finite
groups of finite type over the algebraically closed field k of characteristic zero.
These relate, naturally, to invariant theory for groups and also to the Noether Prob-
lem (one wonders about the rationality of the extension F (xg : g ∈ G)G over F , for
a field F and a finite group G).
In this talk, we introduce these invariants, we state the literature results and we
show that these invariants are trivial for every finite group in Gl3(C) and for the fifth
discrete Heisenberg group H5.



On certain weak Engel-type conditions in groups

Maurizio Meriano

Let w(x, y) be a word in two variables and W the variety of groups determined
by w. In this talk, based on joint work with C. Nicotera [1], we discuss the following
problem: if for every pair of elements a, b in a group G there exists g ∈ G such that
w(ag, b) = 1, under what conditions does the group G belong to W? In particular,
we focus on the n-Engel word w(x, y) = [x,n y].

[1] M. Meriano, C. Nicotera, On certain weak Engel-type conditions in groups, to appear.

Cleanness of group algebras

Paula Murgel Veloso

In collaboration with Prof. Álvaro Raposo, Universidad Politécnica de Madrid.

An element of a ring is clean if it is the sum of a unit and an idempotent. A ring
is clean if every element in it is clean. If the representation of an element in this way
is unique, the element is said to be uniquely clean, and the ring is uniquely clean if
all its elements are so.
The property of cleanness was formulated by Nicholson [1] in the course of his study
of exchange rings, for both are closely related: clean rings are always exchange rings
and the converse is true when idempotents are central in the ring. Uniquely clean
rings were studied later [2] showing that they are a sort of generalization of Boolean
rings.
In the realm of group rings these properties have been studied with the aim to
characterize the rings R and groups G such the group ring RG is clean or uniquely
clean.
At first the focus was set on uniquely clean group rings [3], which is a quite restrictive
property and leaves no much room for groups and rings. For instance, a necessary
condition for RG to be uniquely clean is R to be itself uniquely clean and G to be
a 2-group. This condition is also sufficient if the group is taken among locally finite
groups or solvable groups.
Recently Wang and You [4] studied the property of cleanness of group rings getting
nice results when the ring of coefficients R is commutative and the group G is a
p-group. If p is in the Jacobson radical of R, then RG is clean if and only if R is



clean.
In this communication we show results about the cleanness property in group algebras
KG, where K is a field. But there is a key general result about clean rings of Camillo
and Yu [5] in which they establish that semiperfect rings without an infinite set of
orthogonal idempotents are clean rings. Therefore, since every finite dimensional K
algebra is in this situation, it is clean, and we must go to infinite dimensional group
algebras to find examples which are not clean.

[1] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc.
229 (1977), 269-278.

[2] W.K. Nicholson; Y. Zhou, Rings in which elements are uniquely the sum of an idem-
potent and a unit, Glasg. Math. J. 46 (2004), 227-236.

[3] J. Chen; W.K. Nicholson; Y. Zhou, Group rings in which every element is uniquely the
sum of a unit and an idempotent, Journal of Algebra 306 (2006), 453-460.

[4] X. Wang; H. You, Cleanness of the group ring of an Abelian p-group over a commuta-
tive ring, Alg. Colloq. 19 (2012), 539-544.

[5] V.P. Camillo; H.P. Yu, Exchange rings, units and idempotents, Comm. Alg. 22 (1994),
4737-4749.

Groups with large systems of normal subgroups

Carmen Musella

Groups in which the condition of being normal is imposed to the members of a
system of subgroups have been studied by several authors. In particular, the system
of all subnormal subgroups and that of all non-abelian subgroups are of relevant
interest in the theory of soluble groups. In this context, we discuss the behavior of
soluble groups of infinite rank.

On H−kernels of finite semigroups

Vicente Pérez-Calabuig

Given H a variety of finite groups, that is, a subgroup-closed formation, we can
consider the class S(H) of all H−soluble groups, i.e the groups G in which the trivial



subgroup is H−subnormal in G. This class turns out to be important in semigroup
theory for a better understanding of the kernel of a finite semigroup relative to H,
which plays an important role in the decidability of Mal’cev products. Our aim here
is to study the kernel and its corresponding class of soluble semigroups in order to
obtain results that clarify its computability.

Jordan Nilpotency in Group Rings

César Polcino Milies

The Lie bracket of an associative algebra A is the ring commutator [x, y] = xy−yx.
Using this bracket to define a new product in A, it becomes a Lie Algebra. This
algebra is nilpotent of index n ≥ 2 if this is the smallest positive integer such that
[. . . [[x1, x2], x3], . . . , xn] = 0 for all x1, x2, . . . , xn ∈ A.

Let A = RG denote the group ring of a group G over a commutative ring R, with
unity. Further, assume that α 7→ α∗ is an involution on RG which is a linear extension
of an involution in G. Then, the set A− = {a ∈ A | a∗ = −a} of skew-symmetric
elements of A is a Lie subring.

Similarly, if we define in A a product by x◦y = xy+yx, then it becomes a Jordan
ring and the set A+ = {a ∈ A | a∗ = a} of symmetric elements is a Jordan subring
of A. A is called Jordan nilpotent of index n ≥ 2 if n is the smallest positive integer
such that (. . . ((x1 ◦ x2) ◦ x3) · · · ) ◦ xn = 0 for all x1, x2, . . . , xn ∈ A.

Questions such as when is A Lie nilpotent or when is A− Lie nilpotent have been
discussed in recent literature [1, 2, 5, 6].

We shall discuss similar questions for Jordan nlpotency. This is joint work with
E.G. Goodaire.

[1] A. Giambruno and S. K. Sehgal, Lie nilpotence of group rings, Comm. Algebra 21
(1993), 4253–4261.

[2] A. Giambruno and S. K. Sehgal, Group algebras whose Lie algebra of skew-symmetric
elements is nilpotent, Contemp. Math. 420 (2006), 113–120.

[3] Edgar G. Goodaire and César Polcino Milies, Involutions and anticommutativity in
group rings, Bull. Canad. Math. Soc., 56 (2013), 344-353.

[4] Edgar G. Goodaire and César Polcino Milies, Jordan Nilpotency in Group Rings,
preprint.

[5] G. T. Lee, Group rings whose symmetric elements are Lie nilpotent, Proc. Amer.
Math. Soc. 127 (1999), no. 11, 3153–3159.



[6] Gregory T. Lee, S. K. Sehgal, and E. Spinelli, Lie properties of symmetric elements in
group rings II, J. Pure Appl. Algebra 213 (2009), 1173–1178.

On the unit group of a commutative group ring

Mohamed A. Salim

Let V (ZpeG) be the group of normalized units of the group algebra ZpeG of a finite
abelian p-group G over the ring Zpe of residues modulo pe with e ≥ 1. The abelian
p-group V (ZpeG) and the ring ZpeG are applicable in coding theory, cryptography
and threshold logic (see [1, 4, 5, 7]).
In the case when e = 1, the structure of V (ZpG) has been studied by several authors
(see the survey [2]). The invariants and the basis of V (ZpG) has been given by
B. Sandling (see [6]). In general, V (ZpeG) = 1 + ω(ZpeG), where ω(ZpeG) is the
augmentation ideal of ZpeG. Clearly, if z ∈ ω(ZpeG) and c ∈ G is of order p,
then c + pe−1z is a nontrivial unit of order p in ZpeG. We may raise the question
whether the converse is true, namely does every u ∈ V (ZpeG) of order p have the
form u = c+ pe−1z, where z ∈ ω(ZpeG) and c ∈ G of order p?
We obtained a positive answer to this question and applied it for the description of the
group V (ZpeG) (see [3]). Our research can be considered as a natural continuation
of Sandling’s results.

[1] N.N. Aizenberg, A.A. Bovdi, E.I. Gergo, and F.E. Geche. Algebraic aspects of thresh-
old logic. Cybernetics, 2:26–30, 1980.

[2] A.A. Bovdi. The group of units of a group algebra of characteristic p. Publ. Math.
Debrecen, 52(1-2):193–244, 1998.

[3] V.A. Bovdi, M.A. Salim. On the unit group of a commutative group ring. Submitted
for publication, p.1–10, 2012.

[4] B. Hurley and T. Hurley. Group ring cryptography. Int. J. Pure Appl. Math.,
69(1):67–86, 2011.

[5] T. Hurley. Convolutional codes from units in matrix and group rings. Int. J. Pure
Appl. Math., 50(3):431–463, 2009.

[6] R. Sandling. Units in the modular group algebra of a finite abelian p-group. J. Pure
Appl. Algebra, 33(3):337–346, 1984.

[7] W. Willems. A note on self-dual group codes. IEEE Trans. Inform. Theory,
48(12):3107–3109, 2002.
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On the p-length of a hyperfinite group

Francesca Spagnuolo

Let p be a prime. We say that a periodic p-group P determines the p-length
locally if a periodic group G has p-length less or equal then 1 provided that G has
a pronormal Sylow subgroup isomorphic to P . The aim of this talk is to analyze
hyperfinite groups with Sylow p-subgroups that determine p-length locally in finite
groups.

On locally graded groups with a word whose values are Engel

Antonio Tortora

Dipartimento di Matematica, Università di Salerno, Italy
E-mail: antortora@unisa.it

Following Zelmanov’s solution of the restricted Burnside problem [3, 4], Wilson
showed that any residually finite n-Engel group is locally nilpotent [2]. Recently,
in [1], a stronger result was obtained. Namely, it was proved that given positive
integers m,n and a multilinear commutator word v, if G is a residually finite group
in which all values of the word w = vm are n-Engel, then the verbal subgroup w(G)
corresponding to w is locally nilpotent. In this talk we examine the question whether
this is true in the case where G is locally graded rather than residually finite.

[1] R. Bastos, P. Shumyatsky, A. Tortora and M. Tota On groups admitting a word whose
values are Engel, Internat. J. Algebra Comput. 23 (2013), no. 1, 81–89.

[2] J. S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math.
Soc. 23 (1991), 239–248.

[3] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd exponent,
Math. USSR-Izv. 36 (1991), 41–60.



[4] E. I. Zelmanov, Solution of the restricted Burnside problem for 2-groups, Math. USSR-
Sb. 72 (1992), 543–565.

On Certain Applications of the Khukhro-Makarenko Theorem

Nadir Trabelsi

Laboratory of Fundamental and Numerical Mathematics
University Setif 1, Setif - Algeria

This is a joint work with Ahmet Arikan and Howard Smith.

A recent result of Khukhro-Makarenko states that if G is a group having a sub-
group of finite index which belongs to the variety Xω defined by an outer commutator
word ω, then G has a characteristic subgroup of finite index which belongs to Xω.
Here we use this theorem to obtain generalizations of some well-known results. In
particular, we prove that if G is a torsion-free locally nilpotent group whose proper
subgroups are in XωT, then G ∈ Xω, where T denotes the class of periodic groups;
a well known result when Xω is the variety of nilpotent groups of class at most
c > 0. We also prove some results on groups in which every proper subgroup is in the
class XωF or XωC, where F and C denote the classes of finite and Chernikov groups
respectively.

Looking at infinite groups through the mirror of their conjugacy
classes

Marco Trombetti

The influence of proper subgroups on a group is usually strong. A further evidence
of this phenomenon is given here, looking at the behaviour of commutators of proper
subgroups of an infinite (generalized) soluble group.


