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Suppose A and B are subgroups of a group G. We say that A permutes with
B if the product of A and B, AB = {ab : a ∈ A, b ∈ B}, is a subgroup of G.
If AB = G, we say G is the product of A and B and we call A and B factors of
G. A natural question to ask is whether properties of G = AB can be deduced
from properties of A and B. There is an extensive literature on this question.
Many properties have been considered- see for example the book of Amberg,
Franciosi and de Giovanni [2]- and further restrictions on the products have also
been considered. I want to concentrate on one particular property and will only
consider finite groups, although some of the results do not need finiteness.

Suppose that G is soluble. Then A and B are certainly soluble but A and
B soluble is not enough to ensure that G is soluble and so we may ask the
following questions:

What further conditions on A and B will ensure that G = AB is soluble?

If G is soluble, can we bound the derived length d(G) of G in terms of
invariants of A and B?

If d(G) is bounded, can we find the best possible bound?

For the first question there is an extensive literature, both for restrictions on
the factors and on the type of product. Producing bounds is harder and there
is very little known about best possible bounds. I want to concentrate here on
the second and third questions.

Here the story usually starts with the theorem of Ito:
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Theorem 1. (Ito [12]) Let G = AB with A and B abelian. Then G is
metabelian.

This actually does not need G finite and it is easy to construct groups which
are nonabelian and so this bound is best possible.

The next step is due to Hall and Higman who proved

Theorem 2. ( (Hall and Higman [9]) Suppose that G = AB is soluble and
A, B are nilpotent of coprime order. Then d(G) ≤ c(A) + c(B), where c(A)
denotes the nilpotency class of A.

(This result is often attributed to Pennington [20], who obtains it as a corol-
lary to her main theorem. It first appears as a special case of Theorem 1.2.4 of
[9].)

Much of the work since this result has concentrated on products of nilpotent
groups.

Shortly after, Wielandt proved if G = AB and A, B are nilpotent of coprime
order then G is soluble. Then Kegel removed the restriction on coprimeness of
A and B.

Theorem 3. (Wielandt [22]) If G = AB and A, B are nilpotent of coprime
order then G is soluble.

Theorem 4. (Kegel [16] If G = AB and A, B are nilpotent then G is
soluble.

There are many papers in the decade before Kegel’s theorem that may be
regarded as precursors of Kegel’s result, proving solubility under further restric-
tions on the structure of the factors. Kegel’s proof does not give a bound on the
derived length of the product. For many years it was conjectured that the sum
of the nilpotency classes would be an upper bound for the derived length and
there are a number of partial results.

One of the first was

Theorem 5. (Pennington [20]) If G = AB and A, B are nilpotent then
d(G) ≤ c(A) + c(B) + d(F (G)).

Perhaps more important from the viewpoint of finding a bound was the
following result

Theorem 6. (Pennington [20], Amberg [1]) If G = AB with A, B nilpotent,
then F (G) = (F (G) ∩A)(F (G) ∩B).

These two results tell us that it is enough to consider the case of G nilpotent
(and hence a p-group) to find a bound (p will denote a prime throughout this
paper).

When G is nilpotent, another approach was started by Kazarin in 1982, who
showed that the derived length could be bounded in terms of the orders of the
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derived groups of A and B. Several authors have improved on his bounds in
special cases:

Theorem 7. Suppose that G = AB is a p-group with |A′| = pm and |B′| =
pn with m ≥ n:
i) (Kazarin [14]) d(G) ≤ 2(m+ n) + 1;
ii) (Morigi [19]) d(G) ≤ m+ 2n+ 2; and if B is abelian, d(G) ≤ m+ 2;
iii) (McCann [18]) if A has class at most 2 and B is extraspecial, d(G) ≤ m+3;
iv) (Mann [17]) if B is abelian, d(G) ≤ 2log2(m+ 2) + 3.

Note that these results combined with the results of Pennington and Amberg
above show that the derived length of the product is bounded (in terms of
invariants of the factors). The bound that they give is generally very large. To
find bounds in terms of the nilpotency classes of A and B seems more difficult
and there are fewer results here. Of course the aim here was to prove Kegel’s
conjecture. Since soluble groups of derived length at most d form a formation,
a minimal counterexample to Kegel’s conjecture must have a unique minimal
normal subgroup and so in particular the Fitting subgroup must be a p-group
for some prime p. It seems natural to consider products in which the Fitting
subgroup is a p-group and Stonehewer and I began to look at such groups in
the late 90’s.

Theorem 8. (Cossey and Stonehewer [5]) Suppose G = AB, with A, B
nilpotent, F (G) a p-group. Suppose also F (G)/Φ(F (G)) contains no central
chief factors. Then d(G) ≤ c(A) + c(B) + 1.

In analysing the structure of a minimal example of a group of derived length
c(A)+c(B)+1 in the above theorem, Stonehewer and I produced an example of a
group of derived length 4 which was the product of an abelian and a metabelian
group. We were then able to find a few further examples . In particular we
proved:

Theorem 9. (Cossey and Stonehewer [4]) There are examples of groups
G = AB with A nilpotent of class m, B nilpotent of class n and G of derived
length d > m+n for the following triples (m,n, d): (1, 2, 4), (2, 2, 5) and (2, 2, 6).

Although the most surprising thing about these examples is the length of
time it took to find them, it seems difficult to extend the construction to give
more examples and it seems likely that a linear bound is the correct one.

Another invariant of nilpotent groups that would seem relevant to the de-
rived length of G is the derived length of the factors and this was considered
by Kazarin for factors of coprime order. When A and B have small class, the
bound of Hall and Higman is best possible, but for larger classes it seems too
large. Kazarin showed that it can be replaced by a bound involving the derived
lengths of the factors and perhaps not surprisingly a better bound can be found
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if the product has odd order.

Theorem 10. (Kazarin [15]) Suppose G = AB, A , B nilpotent of coprime
order. Then

d(G) ≤ 2d(A)d(B) + d(A) + d(B)

and if G has odd order then

d(G) ≤ d(A)d(B) +max{d(A), d(B)}.

If A is abelian, Kazarin’s bound is 3d(B) + 1 and 2d(B) if G has odd order.
Are these best possible? If B is metabelian then Kazarin’s bounds are 7 and 4
respectively. Wang and I showed that these bounds could be improved.

Theorem 11. (Cossey and Wang [6]) Suppose G = AB with A abelian and
B nilpotent and metabelian. Suppose also that A and B have coprime orders.
Then d(G) ≤ 4 and if G has odd order d(G) ≤ 3 and these bounds are best
possible.

We actually showed that examples of derived length 4 can be classified and
the odd order result follows from the classification.

Recently Jabara has used a different invariant to bound the derived length
of products of p-groups. Let A1 be the class of finite abelian p-groups. Then
G ∈ An if and only if each chief series of G contains a nontrivial abelian term
K such that G/K ∈ An−1.

Theorem 12. (Jabara [13]) Suppose G = AB is a p-group, with A abelian,
B ∈ An. Then d(G) ≤ 2n.

Another result which gives a bound for a product with restrictions on the
type of product has been given by Dixon and Stonehewer.

Theorem 13. ( Dixon and Stonehewer [7]) Suppose G = AB, with A,
B nilpotent quasinormal subgroups of G. Suppose also that A ∩ B = 1. Then
d(G) ≤ max{2, d(A), d(B)}.

This bound is also clearly best possible. Dixon and Stonehewer ([8]) have
also observed that the result holds with A and B soluble. Cossey and Ezquerro
[3] have shown that the requirement that A and B be quasinormal can be re-
placed by G being the totally permutable product of A and B when G has odd
order. (G is the totally permutable product of A and B if every subgroup of A
permutes with every subgroup of B.)

If G = AB is soluble, even when bounds can be found for d(G), best possible
bounds have only been found for special cases, either for small values of some
invariant or strong restrictions on the type of product. Perhaps the simplest
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case where the answer is not known is G = AB, where A and B are normal in
G.

Of course, if A and B are soluble then G is soluble - this is an easy under-
graduate problem, as is the bound d(G) ≤ d(A) + d(B). So we may ask if this
bound is best possible. Perhaps surprisingly this seems to be a difficult question.

If A,B are abelian, Ito’s Theorem gives a bound of 2 and it is easy to find
examples where this bound is reached. We can also find examples where A is
abelian, d(B) is arbitrary and G has derived length 1 + d(B). An easy set of
examples is given by the following.

Let Tn(p) be the group of upper unitriangular n × n matrices over GF (p).
Weir [21] showed in 1955- see also Huppert [10] III.16.6- that Tn(p) can be
written as the product of n−1 abelian normal subgroups A1, ..., An−1 where Aj

consists of the matrices of the form
(
Ij S
0 In−j

)

.

Now given an integer d we can find an n such that Tn(p) has derived length
at least d+ 1. For some i < n we will have N = 〈A1, ..., Ai〉 of derived length d
and 〈A1, ..., Ai+1〉 = Ai+1N of derived length d+ 1.

When A and B are both nonabelian, I know of no examples where the bound
is attained. It appears to be a difficult problem, even when A and B are both
metabelian. Note that all these examples are groups of prime power order. We
might ask if this is an essential feature of such a product in the following sense. If
G = AB is the product of normal subgroups and P is a Sylow p-subgroup of G, p
a prime, then P is the normal product of P ∩A and P ∩B. If d(G) = d(A)+d(B)
is it true that for some prime p, d(G) = d(P ) = d(P ∩ A) + d(P ∩ B). This
also seems a difficult question in general. It is true if both A and B are abelian
but for A metabelian and B abelian it is not true and an example is given below.

Let p be an odd prime, C be a group of order p and X = 〈x, y〉 be the
nonabelian group of order p3 and exponent p. Put [x, y] = z. Put H = CwrX
and denote the base group of H by Y . Then Y is an elementary abelian group.
We let α be the automorphism of H which fixes X and inverts every element
of Y and put K = H〈α〉. As a 〈y, z〉 module, Y = Y1 × ... × Yp where each Yi
is isomorphic to the regular module and so has a unique minimal submodule
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Mi. We may assume that Yi = Y xi−1

1 . By the dual of [11] Theorem VII.15.5
Yi/Mi has a submodule Ni/Mi of order p2 on which 〈y, z〉 acts trivially and
[Ni, z] 6= 1. Let M be the product of the Mi’s and N the product of the Ni’s.
ThenM and N are normal subgroups of K. We let G = NX〈α〉, A = N〈x, z, α〉
and B = M〈y, z〉. Modulo M , B is normalised by x and centralised by N , z
and α and so B is normal in G. Also modulo M , A centralises N and α and
normalises 〈x, z〉 and so B is normal in G. We then have G′ = 〈z〉N . Since z does
not centralise N , G′′ 6= 1 and so G has derived length 3. The Sylow p-subgroup
of G is just NX and is the normal product of N〈x, z〉 (which is not abelian) and
B. Since (NX)′ = [NX,NX] = [N,X]X ′ = [N,X]〈z〉 and [N,X] ≤M ≤ B we
have (NX)′′ = 1.
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1 Introduction

In a paper on statistical mechanics by Yang [21], the quantum Yang-Baxter
equation appeared. It turned out to be one of the basic equations in mathe-
matical physics and it lies at the foundation of the theory of quantum groups.
One of the important unsolved problems is to discover all the solutions R of the
quantum Yang-Baxter equation

R12R13R23 = R23R13R12,

where V is a vector space, R : V ⊗ V → V ⊗ V is a linear map and Rij denotes
the map V ⊗ V ⊗ V → V ⊗ V ⊗ V that acts as R on the (i, j) tensor factor
(in this order) and as the identity on the remaining factor. In recent years,
many solutions have been found and the related algebraic structures have been
intensively studied (see for example [17]). Drinfeld, in [6], posed the question
of finding the simplest solutions, that is, the solutions R that are induced by
a linear extension of a mapping R : X × X → X × X, where X is a basis
for V . In this case, one says that R is a set theoretic solution of the quantum
Yang-Baxter equation.

Let τ : X2 → X2 be the map defined by τ(x, y) = (y, x). Observe that R
is a set theoretical solution of the quantum Yang-Baxter equation if and only
if the mapping r = τ ◦ R is a solution of the braided equation (or a solution of

http://siba-ese.unisalento.it/ c© 2010 Università del Salento



10 E. Jespers

the Yang-Baxter equation, in the terminology used for example in [10, 12])

r12r23r12 = r23r12r23.

Set theoretic solutions R : X2 → X2 of the quantum Yang-Baxter equation
(with X a finite set) that are (left) non-degenerate and such that r = τ ◦ R
is involutive (i.e., r2 is the identity map on X2) have received recently a lot of
attention by Etingof, Schedler and Soloviev [9], Gateva-Ivanova and Van den
Bergh [10, 13], Lu, Yan and Zhu [18], Rump [19, 20], Jespers and Okninśki
[15, 16] and others. (The set theoretical solutions R such that r is involutive are
called unitary in [19], and in [9] one then says that (X, r) is a symmetric set.)

Recall that a bijective map

r : X ×X −→ X ×X
(x, y) 7→ (fx(y), gy(x))

is said to be left (respectively, right) non-degenerate if each map fx (respectively,
gx) is bijective.

Gateva-Ivanova and Van den Bergh in [13], and Etingof, Schedler and Soloviev
in [9], gave a beautiful group theoretical interpretation of involutive non-dege-
nerate solutions of the braided equation. In order to state this, we need to
introduce some notation. Let FaMn be the free abelian monoid of rank n with
basis u1, . . . , un. A monoid S generated by a set X = {x1, . . . , xn} is said to be
of left I-type if there exists a bijection (called a left I-structure)

v : FaMn −→ S

such that

v(1) = 1 and {v(u1a), . . . , v(una)} = {x1v(a), . . . , xnv(a)},

for all a ∈ FaMn. In [13] it is shown that these monoids S have a presentation

S = 〈x1, . . . , xn | xixj = xkxl〉,

with
(
n
2

)
defining relations so that every word xixj , with 1 ≤ i, j ≤ n, appears

at most once in one of the relations. Such a presentation induces a bijective map
r : X ×X −→ X ×X defined by

r(xi, xj) =

{
(xk, xl), if xixj = xkxl is a defining relation for S;
(xi, xj), otherwise.

Furthermore, r is an involutive right non-degenerate solution of the braided
equation. Conversely, for every involutive right non-degenerate solution of the
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braided equation r : X×X −→ X×X and every bijection v : {u1, . . . , un} → X
there is a unique left I-structure v : FaMn → S extending v, where S is the
semigroup given by the following presentation

S = 〈X | ab = cd, if r(a, b) = (c, d)〉

([16, Theorem 8.1.4.]).
In [15] Jespers and Okniński proved that a monoid S is of left I-type if and

only if it is of right I-type; one calls them simply monoids of I-type. Hence, it fol-
lows that an involutive solution of the braided equation is right non-degenerate
if and only if it is left non-degenerate (see [15, Corollary 2.3] and [16, Corollary
8.2.4]).

Jespers and Okniński in [15] also obtained an alternative description of
monoids of I-type. Namely, it is shown that a monoid is of I-type if and only
if it is isomorphic to a submonoid S of the semi-direct product FaMn ⋊ Symn,
with the natural action of Symn on FaMn (that is, σ(ui) = uσ(i) for σ ∈ Symn),
so that the projection onto the first component is a bijective map, that is

S = {(a, φ(a)) | a ∈ FaMn},

for some map φ : FaMn → Symn. It then follows that S has a (two-sided)
group of quotients (one needs to invert the central element ((u1 · · ·un)k, 1);
where k is the order of the permutation φ(u1 · · ·un)). Of course the group of
quotients G = S−1S of the monoid of I-type S is defined by the same generators
and relations as S. These groups have been investigated by Etingof, Guralnick,
Schedler and Soloviev in [8, 9], where they are called structural groups. They
are simply called groups of I-type.

The group G can also be described as follows. The map φ extends uniquely
to a map φ : Fan → Symn, where Fan is the free abelian group of rank n, and
the group G is isomorphic to a subgroup of the semi-direct product Fan⋊Symn

so that the projection onto the first component is a bijective map, that is

G = {(a, φ(a)) | a ∈ Fan}. (1)

Note that if we put fui
= φ(ui) then S = 〈(ui, fui

) | 1 ≤ i ≤ n〉 and one
can easily obtain the associated involutive non-degenerate solution r : X2 →
X2 defining the monoid of I-type. Indeed, if we set X = {u1, . . . , un}, then
r(ui, uj) = (fui

(uj), f
−1
fui (uj)

(uj)). Obviously, φ(Fan) = 〈φ(a) | a ∈ FaMn〉 =

〈fui
| 1 ≤ i ≤ n〉 (we will denote this group also as Gr). Note that, because of

Proposition 2.2 in [9], if (x, g) 7→ (fx(y), gy(x)) is an involutive non-degenerate
solution of the braided equation then T−1gx

−1T = fx, where T : X → X is the
bijective map defined by T (y) = gy

−1(y). Hence 〈fx : x ∈ X〉 is isomorphic with
〈gx : x ∈ X〉.
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2 Groups of I-type

In order to describe all involutive non-degenerate solutions of the braided
equation (equivalently the non-degenerate unitary set theoretic solutions of the
quantum Yang-Baxter equation) one needs to solve the following problem.

Problem 1: Characterize the groups of I-type.

An important first step in this direction is to classify the finite groups that
are of the type φ(Fan) for some group of I-type G, as in (1) (equivalently the
groups of the form 〈fx : x ∈ X〉, for (x, y) ∈ X2 7→ (fx(y), gy(x)) a non-
degenerate involutive solution of the braided equation). As in [4], a finite group
with this property is called an involutive Yang-Baxter (IYB, for short) group.
So to tackle the above problem we will need to solve the following two problems.

Problem 1a: Classify involutive Yang-Baxter groups.

Problem 1b: Describe all groups of I-type that have a fixed associated IYB
group G.

In [4] these problems are being investigated and in this section we report on
the main results of that paper.

Recall that Etingof, Schedler and Soloviev in [9, Theorem 2.15] proved that
any group of I-type is solvable. As a consequence, every IYB group is solvable.

Verifying that a finite group is IYB seems to be a non-trivial task. Hence
it is useful the give several equivalent properties that guarantee this property.
For this we first recall some terminology of [4]. For a finite set X we denote by
SymX the symmetric group on X. An involutive Yang-Baxter map (IYB map,
for short) on a finite set X is a map λ : X → SymX satisfying

λ(x)λ(λ(x)−1(y)) = λ(y)λ(λ(y)−1(x)) (x, y ∈ X). (2)

The justification for this terminology is based on the fact that each IYB map
yields an involutive non-degenerate set theoretical solution of the Yang-Baxter
equation and conversely. Indeed, let r : X2 → X2 be a bijective map. As before,
denote r(x, y) = (fx(y), gy(x)). From the proof of [3, Theorem 4.1], it follows
that r : X2 → X2 is an involutive non-degenerate set theoretical solution of
the Yang-Baxter equation if and only if fx ∈ SymX for all x ∈ X and the map
λ : X → SymX defined by λ(x) = fx, for all x ∈ X, is an IYB map.

Theorem 1. [4] The following conditions are equivalent for a finite group
G.
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(1) G is an IYB group, that is, there is a map φ : Fan → Symn such that
{(a, φ(a)) : a ∈ Fan} is a subgroup of Fan ⋊Symn and G is isomorphic to
φ(Fan).

(2) There is an abelian group A, an action of G on A and a group homomor-
phism ρ : G → A⋊G such that πGρ = idG and πAρ : G → A is bijective,
where πG and πA are the natural projections on G and A respectively.

(3) There is an abelian group A, an action of G on A and a bijective 1-cocycle
G→ A.

(4) There exists an IYB map λ : A ∪ X → SymA∪X satisfying the following
conditions:

a. λ(A) is a subgroup of SymA∪X isomorphic to G,

b. A ∩X = ∅,

c. λ(x) = idA∪X for all x ∈ X,

d. λ(a)(b) ∈ A for all a, b ∈ A and

e. λ|A is injective.

(5) G ∼= λ(X) for some IYB map λ : X → SymX whose image is a subgroup
of SymX .

(6) G ∼= 〈λ(X)〉 for some IYB map λ : X → SymX .

(7) There exist a group homomorphism µ : G→ SymG satisfying

xµ(x)−1(y) = yµ(y)−1(x), (3)

for all x, y ∈ G.

(8) There exist a generating subset Z of G and a group homomorphism µ :
G→ SymZ satisfying (3) for all x, y ∈ Z.

One obtains some constructions of IYB-groups from a give IYB-groups.

Corollary 1. [4]

(1) If G is an IYB group then its Hall subgroups are also IYB.

(2) The class of IYB groups is closed under direct products.
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Theorem 2. [4] Let G be a finite group such that G = AH, where A is an
abelian normal subgroup of G and H is an IYB subgroup of G. Suppose that
there is a bijective 1-cocycle π : H → B, with respect to an action of H on the
abelian group B such that H ∩A acts trivially on B. Then G is an IYB group.

In particular, every semi-direct product A⋊H of a finite abelian group A by
an IYB group H is IYB.

Theorem 3. [4] Let N and H be IYB groups and let πN : N → A be
a bijective 1-cocycle with respect to an action of N on an abelian group A.
If γ : H → Aut (N) and δ : H → Aut (A) are actions of H on N and A
respectively such that δ(h)πN = πNγ(h) for every h ∈ H, then the semi-direct
product N ⋊H, with respect to the action γ, is an IYB group.

Corollary 2. [4]

(1) Let G be an IYB group and H an IYB subgroup of Symn. Then the wreath
product G ≀H of G and H is an IYB group.

(2) Any finite solvable group is isomorphic to a subgroup of an IYB group.

(3) Let n be a positive integer. Then the Sylow subgroups of Symn are IYB
groups.

(4) Any finite nilpotent group is isomorphic to a subgroup of an IYB nilpotent
group.

The next result yields many examples of IYB groups.

Theorem 4. [4] Let G be a finite group having a normal sequence

1 = G0 ⊳G1 ⊳G2 ⊳ · · ·⊳Gn−1 ⊳Gn = G

satisfying the following conditions:

(i) for every 1 ≤ i ≤ n, Gi = Gi−1Ai for some abelian subgroup Ai;

(ii) (Gi−1 ∩ (Ai · · ·An), Gi−1) = 1;

(iii) Ai is normalized by Aj for every i ≤ j.

Then G is an IYB group.

Corollary 3. [4]

(1) Let G be a finite group. If G = NA, where N and A are two abelian sub-
groups of G and N is normal in G, then G is an IYB group. In particular,
every abelian-by-cyclic finite group is IYB.
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(2) Every finite nilpotent group of class 2 is IYB.

It is unclear whether the class of IYB groups is closed for taking subgroups.
As a consequence, it is unknown whether the class of IYB groups contains all
finite solvable groups. Hence, our next problem.

Problem 2: Are all finite solvable groups involutive Yang-Baxter groups, i.e.
does the class of IYB groups coincide with that of all solvable finite groups.

The results in [4] also indicate that there is no obvious inductive process to
prove that solvable finite groups are IYB. Indeed for such a process to exist one
would like to be able to lift the IYB structure from subgroups H or quotient
groups G of a given group G to G. However, in [4], examples are given that
show that not every IYB homomorphism of a quotient of G can be lifted to an
IYB homomorphism of G.

Concerning Problem 1b: If r(x1, x2) = (fx1
(x2), gx2

(x1)) is an involutive
non-degenerate solution on a finite set X of the braided equation then it is
easy to produce, in an obvious manner, infinitely many solutions with the same
associated IYB group, namely for every set Y let rY : (X ∪ Y )2 → (X ∪ Y )2 be
given by rY ((x1, y1), (x2, y2)) = ((fx1

(x2), y1), (gx2
(x1), y2)). In [4] an alternative

way of obtaining another involutive non-degenerate solution on X × X of the
braided equation with the same associated IYB group is given. It follows that, in
a non-obvious fashion, infinitely many set theoretic solutions of the Yang-Baxter
equation are obtained for the same IYB group.

3 Groups of I-type and poly-Z groups

There are two other approaches, both originating from the work of Etingof,
Schedler and Soloviev, [9], that could lead to successfully classify all possible
set theoretic solutions of the Yang-Baxter equation. The idea is to show that
every solution can be built in a recursive way from certain solutions of smaller
cardinality.

Let (X, r) be a set theoretical solution on the finite set X. The first alter-
native approach is based on the retract relation ∼ on the set X, introduced in
[9], and defined by

xi ∼ xj if σi = σj

(here we denote by σi the permutation fxi
; by γj or γxj

we denote the map gxj
).

There is a natural induced solution

Ret(X, r) = (X/∼, r̃),
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and it is called the retraction ofX. A solution (X, r) is called amultipermutation
solution of level m ifm is the smallest nonnegative integer such that the solution
Retm(X, r) has cardinality 1. Here one defines

Retk(X, r) = Ret(Retk−1(X, r))

for k > 1. If such an m exists then one also says that the solution is retractable.
In this case, the group G(X, r) is a poly-Z group (see [16, Proposition 8.2.12]).
Recall that a group is called poly-Z (or, poly-infinite cyclic) if it has a finite
subnormal series with factors that are infinite cyclic groups.

The second alternative approach is based on the notion of generalized twisted
union. In order to state the definition, first notice that there is a natural action of
the associated involutive Yang-Baxter group Gr on X defined by σ(xi) = xσ(i).
A set theoretic involutive non-degenerate solution (X, r) is called a generalized
twisted union of solutions (Y, rY ) and (Z, rZ) if X is a disjoint union of two
Gr-invariant non-empty subsets Y, Z such that for all z, z′ ∈ Z, y, y′ ∈ Y we
have

σγy(z)|Y = σγy′ (z)|Y (4)

γσz(y)|Z = γσz′ (y)|Z
. (5)

Here, to simplify notation, we write σx for σi if x = xi, and similarly for all γi.
If, moreover, (X, r) is a square free solution (that is, every defining relation is
without words of the form x2i ), then conditions (4) and (5) are equivalent to

σσy(z)|Y = σz|Y (6)

σσz(y)|Z = σy|Z , (7)

(see [10, Proposition 8.3]). Let Gr,Y be the subgroup of Gr generated by the set
{σy | y ∈ Y } and let Gr,Z be the subgroup of Gr defined in a similar way. Then
(6) and (7) amount to saying that the elements of the same Gr,Y -orbit on Z
determine the same permutation of Y and the elements of the sameGr,Z-orbit on
Y determine the same permutation of Z. The simplest example (called a twisted
union in [9]) motivating this definition is obtained by choosing any permutations
σ1, σ2 ∈ Symn, n = |X|, such that σi(Y ) = Y for i = 1, 2, and σy = σ1 for
every y ∈ Y and σz = σ2 for every z ∈ Z. An important step supporting this
approach was made by Rump [19], who showed that the number of Gr-orbits on
X always exceeds 1 if (X, r) is a non-degenerate involutive square free solution
with |X| > 1.

The following conjectures were formulated by Gateva-Ivanova in [10].
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(GI 1) Every set theoretic involutive non-degenerate square free solution (X, r)
of cardinality n ≥ 2 is a multipermutation solution of level m < n.

(GI 2) Every multipermutation square free solution of level m and of cardinality
n ≥ 2 is a generalized twisted union of multipermutation solutions of level
less than m.

Notice that the square free assumption in (GI 1) is essential. Indeed in [16,
Example 8.2.13] an example is given of a set theoretic involutive non-degenerate
solution of cardinality 4 that is not a multipermutation solution.

In a recent paper [5] Cedó, Jespers and Okniński investigated these con-
jectures and obtained the following results. Recall that a set theoretic solution
(X, r) is said to be trivial if r(xi, xj) = (xj , xi) for every i, j. This is equivalent
to saying that σi is the identity map for every i.

Theorem 5. [5] Assume that (X, r) is a set theoretic involutive non-de-
generate square free solution with abelian associated IYB-group Gr. If r is not
trivial then there exist i, j ∈ {1, . . . , n} such that σi = σj, i 6= j and xi, xj in
one Gr-orbit.

An application is an affirmative answer for (GI 1) in case the IYB-group is
abelian. Actually a stronger statement is proved. For this the notion of strong
retractability of (X, r) was introduced. Let ρ denote the refining of the relation
∼ on X by requesting additionally that the elements are in the same Gr-orbit
on X. Then, let Retρ(X, r) = (X/ρ, r̄) denote the induced solution. One says in
[5] that (X, r) is strongly retractable if there exists m ≥ 1 such that applying
m times the operator Retρ we get a trivial solution.

Note that the IYB group corresponding to the solution (X/ρ, r̄) also is
abelian if Gr is abelian.

Corollary 4. [5] Assume that (X, r) is a set theoretic involutive non-de-
generate square free solution with abelian associated IYB-group Gr. Then (X, r)
is strongly retractable.

The conjecture can also be confirmed in some cases that are not covered by
the previous result.

Theorem 6. [5] Let (X, r) be a set theoretic involutive non-degenerate
square free solution with associated IYB group Gr, such that its generators
σi, i = 1, . . . , n, are cyclic permutations. Then, (X, r) is strongly retractable.
Moreover, if |X| > 1 then (X, r) is a generalized twisted union.

The following result shows that (GI 2) is not true in general.

Theorem 7. [5] There exists a multipermutation square free solution of
level 3 (on 24 generators and with 3 orbits) that it is not a generalized twisted
union. Furthermore, the associated IYB group is abelian.
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In a recent paper [2] Cameron and Gateva-Ivanova introduced the notion of
strong twisted union. This notion is weaker than that of a generalized twisted
union and is defined as follows. A set theoretic involutive non-degenerate so-
lution (X, r) with associated IYB-group Gr is called a strong twisted union of
solutions if X is a disjoint union X = X1 ∪ · · · ∪Xm of Gr-invariant non-empty
subsets Xi so that (Xi ∪ Xj , rXi∪Xj

) is a generalized twisted union. A new
conjecture is then stated.

(GI 2a) Every involutive non-degenerate square-free multipermutation solution of
level m is a strong twisted union of multipermutation solutions of levels
less than m.

This conjecture is confirmed by Cameron and Gateva-Ivanova in the follow-
ing cases.

Theorem 8. [2] The statement (GI 2a) holds in the following cases:

(1) the associated IYB-group is abelian,

(2) the solution is retractable of multipermutation level not exceeding 3.

We finish this section with posing two problems.

Problem 3: Prove (GI 1) for arbitrary IYB-groups.

Problem 4: Classify the multipermutation square free solutions of level m and
of cardinality n ≥ 2 that are a generalized twisted union of multipermutation
solutions of level less than m.

4 Algebras of groups of I-type

If G = {(a, φ(a)) | a ∈ Fan} is a group of I-type then the IYB group G =
φ(Fan) naturally acts on the quotient group A = Fan/K, where K = {a ∈ Fan |
φ(a) = 1} and we obtain an associated bijective 1-cocycle G → A with respect
to this action. By a result of Etingof and Gelaki [7], this bijective 1-cocycle
yields a non-degenerate 2-cocycle on the semi-direct product H = A⋊G. This
has been generalized by Ben David and Ginosar [1] to more general extensions
H of A by G with a bijective 1-cocycle from G to A. This construction of Etingof
and Gelaki and of Ben David and Ginosar gives rise to a group of central type
in the sense of [1], i.e. a finite group H with a 2-cocycle c ∈ Z2(H,C∗) such that
the twisted group algebra CcH is isomorphic to a full matrix algebra over the
complex numbers, or equivalently H = K/Z(K) for a finite group K with an
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irreducible character of degree
√

[K : Z(K)]. This provides a nice connection
between IYB groups and groups of central type that should be investigated.

The above links groups of I-type (hence solutions of the Yang-Baxter equa-
tion) and ring theory. Another important link with ring theory is that the semi-
group algebra FS of a monoid of I-type S over an arbitrary field F shares many
properties with the polynomial algebra in finitely many commuting variables.
For example, in [13], it is shown that FS is a domain that satisfies a polyno-
mial identity and that it is a maximal order in its classical ring of quotients.
In particular, the group of I-type SS−1 is finitely generated abelian-by-finite
and torsion free, i.e., it is a Bieberbach group ([13, Theorem 1.7], see also [15,
Corollary 8.27]). The homological properties for FS were the main reasons for
studying monoids of I-type in [13] and it was inspired by earlier work of Tate
and Van den Bergh on Sklyanin algebras.

Clearly the group algebra F [S−1S] is a central localization of FS and hence
shares many properties with FS: it is a domain that satisfies a polynomial iden-
tity and it is a maximal order in its classical ring of quotients. Group algebras
are a fundamental topic of research, as for example, they are a natural link be-
tween group theory and ring theory. Clearly the elements of the form fg, with
0 6= f ∈ F and g ∈ G are invertible in FG (these are called trivial units). In case
G is torsion-free group, then there is a famous conjecture due to Kaplansky: are
all units in FG trivial?

Problem 5: Determine the group of invertible elements in the group algebra
FG, for a group G of I-type; i.e. verify Kaplansky’s conjecture for such group
algebras.

Note that if the group of I-type is poly-infinite cyclic then one obtains
immediately that the group algebra FG is a domain that has only trivial units,
i.e. all units are trivial. So, in case conjecture (GI 1) has a positive answer then
Problem 5 only should be investigated for groups of I-type that are not square
free. As mentioned earlier, an example of this type is the following ([16, Example
8.2.14]) G = 〈x1, x2, x3, x4 | x1x2 = x3x3, x2x1 = x4x4, x1x3 = x2x4, x1x4 =
x4x2, x2x3 = x3x1, x3x2 = x4x1〉. This group is not poly-infinite cyclic as it
contains the subgroup 〈a, b | a−1b2a = b−2, b−1a2b = a−2〉 of which it is well
known that it is not poly-infinite cyclic.

The problem of Kaplansky has been open for many decades and it appears
to be notoriously difficult. Now, groups G of I-type are such that their group
algebra FG behaves in many ways as commutative polynomial algebras. Hence,
in this spirit, one would hope that such groups are ideal candidates for which the
Kaplansky problem can be solved. The nice combinatorial nature of G should
be of great help.
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Abstract. Let F be a field and A an (infinite dimensional) vector space over F . A group
G of linear transormations of A is said to be finitary linear if for each element g ∈ G the
centralizer CA(g) has finite codimension over F . Finitary linear groups are natural analogs of
FC-groups (i.e. groups with finite conjugacy classes). In this paper we consider linear analogs
of groups with boundedly finite conjugacy classes, and also some generalizations corresponding
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Let F be a field and A a vector space over F . Denote by GL(F,A) the group
of all F -automorphisms of A. The subgroups of GL(F,A) are called the linear
groups. Linear groups play a very important role in algebra and other branches
of mathematics. If dimF (A) (the dimension of A over F ) is finite, say n, then
a subgroup G of GL(F,A) is a finite dimensional linear group. It is well known
that in this case, GL(F,A) can be identified with the group of all invertible
n×n matrices with entries in F . The theory of finite dimensional linear groups
is one of the most developed in group theory. It uses not only algebraic, but
also topological, geometrical, combinatorial, and many other methods.

However, in the case when A has infinite dimension over F , the study of the
subgroups of GL(F,A) requires some additional restrictions. This case is more
complicated and requires some additional restrictions allowing an effective em-
ploying of already developed techniques. The most natural restrictions here are
the finiteness conditions. Finitary linear groups demonstrate the efficiency of
such approach. We recall that a subgroup G of GL(F,A) is called finitary if
for each element g ∈ G its centralizer CA(g) has finite codimension over F .
The theory of finitary linear groups is now well-developed and many interest-
ing results have been proved (see, for instance, the survey [1]). We begin with
consideration on some generalizations of such groups.
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1 On some generalizations of finitary linear groups

If G is a subgroup of GL(F,A), we can consider the vector space A as a
module over the group ring FG. We can obtain the following generalizations of
finitary groups. Replacing the field F by the ring R, artinian and noetherian R-
modules are natural generalizations of the concept of a finite dimensional vector
space. Some related generalizations of finitary groups have been considered by
B.A.F. Wehrfritz (see [2], [3], [4], [5]).

LetR be a ring,G a group andA anRG-module. Following B.A.F. Wehrfritz,
a group G is called artinian - finitary, if for every element g ∈ G, the factor-
module A/CA(g) is artinian as an R-module. In this case, we say that A is an
artinian - finitary RG-module.

We observe that we can consider finitary linear groups as linear analogs of
the FC-groups (we can define an FC-groupG as a group such that |G : CG(x)| is
finite for each element g ∈ G). Similarly, if R = Z and G is an artinian - finitary
group, then the additive group of the factor-module A/CA(g) is Chernikov for
every element g ∈ G. This shows that we can consider artinian - finitary groups
as linear analogs of the groups with Chernikov conjugacy classes (shortly CC-
groups).

One of the first important result of theory of FC-groups was a theorem due
to B. H. Neumann that described the structure of FC- groups with bounded
conjugacy classes. Following B. H. Neumann, a group G is called a BFC-group
if there exists a positive integer b such that |gG| ≤ b for each element g ∈ G. B.
H. Neumann proved that a group G is a BFC-group if and only if the derived
subgroup [G,G] is finite ([6], Theorem 3.1).

A group G ≤ GL(F,A) is said to be a bounded finitary linear group, if
there is a positive integer b such that dimFA/CA(g) ≤ b for each element
g ∈ G. These groups are some linear analogs of BFC-groups. Let ωRG be
the augmentation ideal of the group ring RG, i.e. the two-sided ideal of RG
generated by the all elements g − 1, g ∈ G. The submodule A(ωFG) is called
the derived submodule. We can consider the derived submodule as a linear
analog of the derived subgroup. Note that in the general case we cannot obtain
an analog of Neumann’s theorem. It is not hard to construct an FpG-module
A over an infinite elementary abelian group G such that G is bounded finitary
linear group but A(ωFpG) has infinite dimension over Fp (see [7]). However,
under some natural restrictions on the p-sections of a bounded finitary linear
group, the finiteness of dimF (A(ωFG)) can be proved. Thus some linear analog
of B. H. Neumann’s theorem can be established. We considered a more general
situation.

Let A be an artinian Z-module. Then a set Π(A) is finite. If D is a divisible
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part of A, then D = K1 ⊕ . . .⊕Kd where Kj is a Prüfer subgroup, 1 ≤ J ≤ d.
The number d is an invariant of A. Another important invariant here is the
order of A/D.

If D is a Dedekind domain, the structure of the artinian D-module A is very
similar to that described above. Let D be a Dedekind domain. Put

Spec(D) = {P |P is a maximal ideal of D}

Let P be a maximal ideal of D. Denote by AP the set of all elements a such
that AnnD(a) = Pn for some positive integer n. If A is a D-periodic module,
then define

AssD(A) = {P ∈ Spec(D)|AP 6=< 0 >}.

In this case, A = ⊕P∈πAP where π = AssD(A) (see, for instance, [8], Corollary
6.25). If A is an artinian D-module, then A is D-periodic and the set AssD(A)
is finite. Furthermore, A = K1 ⊕ · · · ⊕Kd ⊕B where Kj is a Prufer submodule,
1 ≤ j ≤ d, B is a finitely generated submodule (see, for instance, [9], Theorem
5.7). Here the Prufer submodule is a D-injective evelope of a simple submodule.
Observe that this decomposition is unique up to isomorphism. It follows that
the number d is an invariant of the module A. Put d = ID(A). The submodule
B has a finite series of submodules with D - simple factors. The Jordan-Holder
Theorem implies that the length of this composition series is also an invariant
of B, and hence of A. Denote this number by IF (A).

Let D be a Dedekind domain and G a group. The DG-module A is said to
be a bounded artinian finitary if A is artinian finitary and there are positive
integers b and d and a finite subset τ ⊆ Spec(D) such that IF (A/CA(g)) ≤ b,
ID(A/CA(g)) ≤ d and AssD(A/CA(g)) ⊆ bσ(A). We will use the following
notation:

π(A) = {p|p = charD/P for all P ∈ bσ(A)}.

The group G is said to be generalized radical if G has an ascending series
whose factors are either locally nilpotent or locally finite. Let p be a prime.
We say that a group G has finite section p-rank rp(G) = r if every elementary
abelian p-section U/V ofG is finite of order at most pr and there is an elementary
abelian p-section A/B of G such that |A/B| = pr.

In the paper [10], the following analog of Neumann’s theorem has been
obtained.

Theorem 1. (L.A.Kurdachenko, I.Ya.Subbotin, V.A.Chepurdya [10]) Let
D be a Dedekin domain, G a locally generalized radical group, and A a DG-
module. Suppose that A is a bounded artinian finitary module. Assume also that
there exists a positive integer r such that the section p-rank of G is at most r
for all p ∈ π(A). Then
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a) the submodule A(ωFG) is artinian as a D-module,

b) the factor-group G/CG(A) has finite special rank.

Corollary 1. Let F be a field, A a vector space over F , G a locally gener-
alized radical subgroup of GL(F,A). Suppose that there exists a positive integer
r such that the section p-rank of G is at most r were p = charF . Then

a) the submodule A(ωFG) is finite dimensional,

b) the factor-group G/CG(A) has finite special rank.

As we noted above the restriction on the section p-rank is essential.

2 Linear groups that are dual to finitary

Consider another analog of FC-groups which is dual in some sense to finitary
linear groups. We introduce this concept not only for linear groups, but in a more
general situation.

Let R be a ring, G a group and A an RG-module. If a is an element of A,
then the set

aG = {ag|g ∈ G}

is called the G-orbit of a.
We say that G has finite orbits on A if the orbit aG is finite for all a ∈ A.
By the orbit stabilizer theorem, it is clear that in this situation, |aG| =

|G : CG(a)| is finite, so we can think of aG as the analog of a conjugacy class.
Let F be a field and let G be a subgroup of GL(F,A). Suppose that dimF (A)

is finite and choose a basis a1, ..., an for the vector space A. Suppose that G has
finite orbits on A. Then every element of CG(a1)∩ ...∩CG(an) acts trivially on
A, and hence CG(a1)∩ ...∩CG(an) =< 1 >. However, this intersection has finite
index in G and hence G is finite. Thus, we can think of linear groups with finite
orbits as generalizations of finite groups.

We say that G has boundedly finite orbits on A if there is a positive integer b
such that |aG| ≤ b for each element a ∈ A. The smallest such b will be denoted
by loA(G).

Since |aG| = |G : CG(a)| for all a ∈ A, it is not hard to see that any group
G in which G/CG(A) is finite has boundedly finite orbits on A. However, as the
following example shows, the converse statement is far from being true.

Let A be a vector space over the field F admitting the basis {an|n ∈ N}.
For every n ∈ N the mapping gn : A −→ A, given by

amgn =

{
a1 + am if m = n+ 1
am if m 6= n+ 1
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is an F -automorphism of A. Then G = 〈gn|n ∈ N〉 is a subgroup of GL(F,A).
Clearly [gn, gm] = 1 whenever n 6= m, so that G is abelian. Moreover, if charF =
p > 0, then G is an elementary abelian p-group. It follows in this case that
ag = a+ ta1 for every a ∈ A, where 0 ≤ t < p. Consequently,

aG = {a, a+ a1, a+ 2a1, ..., a+ (p− 1)a1}.

Therefore, |aG| ≤ p for each element a ∈ A, and G has boundedly finite
orbits on A. However, it is clear that CG(A) =< 1 >, so that G/CG(A) is
infinite.

Let B be a vector space over a field F of characteristic p > 0 admitting the
basis {bn|n ∈ N}. We define the mapping x : B −→ B by the rule

bmx =

{
bm if m is even
b2n + b2n+1 if m = 2n+ 1.

Clearly, x is an F -automorphism of B and B(ωF < x >) = ⊕n∈Nb2nF . In
particular, the dimension ofB(ωF < x >) is infinite. Since |x| = p, |b < x >| ≤ p
for each element b ∈ B. Now let A and G be the vector space and the linear
group from the first example, respectively. Then L = G× < x > acts on the
vector space C = A⊕B in the natural way. Clearly, |cL| ≤ p2 for every element
c ∈ C. However, the factor-group L/CL(C) is infinite and the dimension of
C(ωFL) is infinite. In other words, we cannot have an analog of Neumann’s
theorem.

Next result describes linear groups acting with boundedly finite orbits.

Theorem 2. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
R a ring and A an RG-module. Suppose that G acts on A with boundedly finite
G-orbits, and let b = loA(G). Then

i) G/CG(A) contains a normal abelian subgroup L/CG(A) of finite exponent
such that G/L is finite.

ii) A contains an RG-submodule C such that C is finitely generated as an
R-module and L acts trivially on C and A/C.

iii) There is a positive integer m such that m is a divisor of b! and
mA(ωRG) =< 0 >.

Note that in the above statement the submodules of C need not be finitely
generated. Therefore, we cannot deduce in this theorem that A(ωRG) is finitely
generated as an R-module. However, if R is noetherian, then every finitely gen-
erated R-submodule is also noetherian. So in this case, every submodule of C is
finitely generated. Even when R is a noetherian ring so that A(ωRG) is finitely



26 L.A. Kurdachenko

generated, in general it appears that nothing can be deduced concerning its
number of generators. We can now establish our next main theorem.

Theorem 3. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
R a noetherian ring and A an RG-module.

i) Suppose that G acts on A with boundedly finite G-orbits, and let b =
loA(G). Then G/CG(A) contains a normal abelian subgroup L/CG(A) of
finite index such that A(ωRG) is finitely generated.

ii) If a factor-group G/CG(A) has a normal subgroup L/CG(A) of finite index
such that A(ωRG) is finite, then G has boundedly finite orbits on A.

iii) If there is an integer b such that R/b! R is finite and b = loA(G), then
G/CG(A) contains a normal abelian subgroup L/CG(A) of finite index and
finite exponent such that A(ωRG) is finite.

Next we give some specific examples of rings satisfiyng the conditions of
Theorem 3. Of course, one particular interesting example is the ring of integer.

Corollary 2. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group
acting on the ZG-module A. Then G has boundedly finite orbits on A if and
only if G contains a normal subgroup L such that G/L and A(ωZL) are finite.

Next result is a generalization of Corollary 2. An infinite Dedekin domain
D is said to be a Dedekind Z0-domain if for every maximal ideal P of D, the
quotient ring D/P is finite (see for instance [9], Chapter 6). If F is a finite field
extension of Q and R is a finitely generated subring of F , then R is an example
of a Dedekind Z0 domain.

Corollary 3. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
D a Dedekind Z0-domain and A a DG-module. Then G has boundedly finite
orbits on A if and only if there exists a normal abelian subgroup L/CG(A) of
G/CG(A) of finite index and finite exponent such that A(ωDG) is finite.

For the case when the ring of scalars is a field, we obtain

Theorem 4. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
F a field of characteristic p > 0 and A an FG-module. Suppose that G acts on
A with boundedly finite G-orbits. Then

i) G/CG(A) contains a normal abelian p-subgroup L/CG(A) of finite expo-
nent such that G/L is finite.

ii) A contains an FG-submodule C such that dimF (C) is finite and L acts
trivially on C and A/C.

Next result deals with the situation when G/CG(A) is finite.
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Theorem 5. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
F a field and A an FG-module. Suppose that G acts on A with boundedly finite
G-orbits. Assume that if charF = p > 0, then G/CG(A) is a p′-group. Then
G/CG(A) is finite.

In particular, if F is a field of characteristic 0, then G acts on the FG-module
A with boundedly finite G-orbits if and only if G/CG(A) is finite.

We consider now the following generalization. If a group G acts on A with
finite G-orbits, then an FG-submodule aFG has finite dimension over F .

Let F be a field, A a vector space over F and G a subgroup of GL(F,A).
We say that G is a linear group with finite dimensional G-orbits (or that A has
finite dimensional G-orbits) if the G-orbit aG generates a finite dimensional
subspace for each element a ∈ A.

As we have seen above, if a group G has finite G-orbits then G has finite
dimensionalG-orbits, but the converse is false. Every ordinary finite dimensional
linear group G is a group with finite dimensional G-orbits. But we have seen
above that if a finite dimensional linear group G has finite G-orbits, then G is
finite.

We say that a linear group G has boundedly finite dimensional orbits on A
if there is a positive integer b such that dimF (aFG) ≤ b for each element a ∈ A.
Put

md(G) = max{dimF (aFG) | a ∈ A}.

Every linear group G defined over a finite dimensional vector space A is a group
with boundedly finite dimensional orbits.

In view of Neumann’s result, a natural question arises: when is dimF (A(ωFG))
finite? An easy computation shows that aFG ≤ A(ωFG) + aF for each a ∈ A,
and hence if dimF (A(ωFG)) ≤ d then aFG is of F -dimension at most d + 1.
Thus, if A(ωFG) is finite dimensional, then G has boundedly finite dimensional
orbits. However, as we showed above, even for linear groups having boundedly
finite orbits on A, the converse is false. It would be interesting to know which
conditions imposed on a group G implies that A(ωFG) is finite dimensional.

Let B be a subspace of A, then the norm of B in G is the subgroup

NormG(B) =
⋂

b∈B

NG(bF ).

Observe thatNormG(B) is the intersection of the normalizers of all F -subspaces
of B, and that G = NormG(A) if and only if every subspace of A is G-invariant.

The following theorem provides us with a description of linear groups having
boundedly finite dimensional orbits on A.
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Theorem 6. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Let F be a field,
A a vector space over F and G a subgroup of GL(F,A). Suppose that G has
boundedly finite dimensional orbits on A and let b = md(G). Then

i) A has an FG-submodule D such that dimF (D) is finite and if K = CG(D),
then K ≤ NormG(A/D). Moreover there exists a function f such that
dimF (D) ≤ f(b).

ii) K is a normal subgroup of G and has a G-invariant abelian subgroup
T such that A(ωFT ) ≤ D and K/T is isomorphic to a subgroup of the
multiplicative group of a field F .

iii) T is an elementary abelian p-subgroup if charF = p > 0 and is a torsion-
free abelian group otherwise.

In particular, G is an extension of a metabelian group by a finite dimen-
sional linear group.

We use Theorem 6 to establish several properties of groups with boundedly
finite dimensional orbits that are analogs to corresponding results for finite
dimensional linear groups. There are many applications of Theorem 6. Here we
just select some of them. It is a well-known theorem of Schur that periodiic
finite dimensional linear groups are locally finite.

Corollary 4. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Suppose that G
has boundedly finite dimensional orbits on A.

i) If G is periodic then G is locally finite.

ii) If G is locally generalized radical then G is locally (finite and soluble).

iii) If G is a periodic p′-group, where p = charF , then the centre of G includes
a locally cyclic subgroup K such that G/K is soluble-by-finite.

Now we consider another topic: the reduction to the groups with finite di-
mensional orbits.

Let again G be a subgroup of GL(F,A). We say that G is a linear group with
finite G-orbits of subspaces if the set clG(B) = {Bg | g ∈ G} is finite for each
F -subspace B of A. Groups with this property are natural analogs of groups
with finite G-orbits of elements. Since it is clear that |clG(B)| = |G : NG(B)|,
it follows that G has finite G-orbits of subspaces if and only if the indexes
|G : NG(B)| are finite for all F -subspaces B of A. It is not hard to prove that if
G has finite G-orbits of subspaces then dimF (aFG) is finite, for each element
a ∈ A.
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Observe that if every F -subspace B is G-invariant, then G is abelian. Linear
groups with finite G-orbits of subspaces can be considered as natural general-
izations of abelian linear groups.

For these groups we obtain the following result.

Theorem 7. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Let F be a field, A
a vector space over F and G a subgroup of GL(F,A). Suppose that G is a linear
group with finite G-orbits of subspaces. Then the factor group G/NormG(A) is
finite and G is central-by-finite.

We say that a group has boundedly finite G-orbits of subspaces if there is a
positive integer b such that |clG(B)| ≤ b for all subspaces B of A.

Corollary 5. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Let F be a field,
A a vector space over F and G a subgroup of GL(F,A). Then G has finite G-
orbits of subspaces if and only if G has boundedly finite G-orbits of subspaces.

3 Linear groups with restriction on subgroups of in-

finite central dimension

If H is a subgroup of GL(F,A), then H really acts on the factor-space
A/CA(H). Following [13] we say that H has finite central dimension, if
dimF (A/CA(H)) is finite. In this case dimF (A/CA(H)) = centdimF (H) will be
called the central dimension of the subgroup H.

If H has finite central dimension, then A/CA(H) is finite dimensional. Put
C = CG(A/CA(H)). Then, clearly, C is a normal subgroup of H and H/C is
isomorphic to some subgroup of GLn(F ) where n = dimF (A/CA(H)). Each
element of C acts trivially on every factor of the series < 0 >≤ CA(H) ≤ A,
so that C is an abelian subgroup. Moreover, if charF = 0, then C is torsion-
free; if charF = p > 0, then C is an elementary abelian p-subgroup. Hence,
the structure of H in general is defined by the structure of G/C, which is an
ordinary finite dimensional linear group.

Let G ≤ GL(F,A) and let Licd(G) be the set of all proper subgroups of G
having infinite central dimension. In the paper [13], it has been proved that if
every proper subgroup of G has finite central dimension, then either G has finite
central dimension or G is a Prufer p-group for some prime p (under some natural
restrictions on G). This shows that it is natural to consider those linear groups
G, in which the family Licd(G) is ”very small” in some particular sense. But
what means ”very small” for infinite groups? One of the natural approaches
possible here is to consider finiteness conditions. More precisely, it is natural
to consider the groups in which the family Licd(G) satisfies a suitable strong
finiteness condition. In the paper [14] we considered some of such situations. In
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particular, linear groups in which the family Licd(G) satisfies either the minimal
or the maximal condition and some rank restriction were considered. The weak
minimal and weak maximal conditions are natural group-theoretical generaliza-
tions of the ordinary minimal and maximal conditions. These conditions have
been introduced by R.Baer [15] and D.I.Zaitsev [16]. The definition of the weak
minimal condition in the most general form is the following.

Let G be a group and M a family of subgroups of G. We say that M
satisfies the weak maximal (respectively minimal) condition (or that G satisfies
the weak maximal (respectively minimal) condition for M-subgroups), if for
every ascending (respectively descending) chain {Hn | n ∈ N} of subgroups
in the family M there exists a number m ∈ N such that the indexes |Hn+1 : Hn|
(respectively |Hn : Hn+1|) are finite for all n ≥ m.

Groups with the weak minimal or maximal conditions for some important
families of subgroups have been studied by many authors (see, for instance, the
book [17],5.1, and the survey [18]).

We say that a group G ≤ GL(F,A) satisfies the weak maximal (respec-
tively minimal) condition for subgroups of infinite central dimension, or shortly
Wmax− icd (respectively Wmin− icd), if the family Licd(G) satisfies the weak
maximal (respectively minimal) condition.

The first results about linear groups satisfying the conditions Wmin − icd
and Wmax − icd have been obtained in [19]. More precisely, this paper was
devoted to the study of periodic groups with such properties. The main results
are the following

Theorem 8. (J.M. Munoz-Escolano, J. Otal, N.N. Semko [19]) Let F be
a field, A a vector space over F and G a locally soluble periodic subgroup of
GL(F,A). Suppose that G has infinite central dimension and satisfies Wmin−
icd or Wmax− icd. The following assertions hold

1) If charF = 0, then G is a Chernikov group.

2) If charF = p > 0, then either G is a Chernikov group or G has a series
of normal subgroups H ≤ D ≤ G satisfying the following conditions:

2a) H is a nilpotent bounded p-subgroup.

2b) D = HλQ for some non-identity divisible Chernikov subgroup Q such
that p /∈ Π(Q).

2c) H has finite central dimension, Q has infinite central dimension.

2d) If K is a Prufer q-subgroup of Q and K has infinite central dimen-
sion, then H has a finite K-composition series.

2e) G/D is finite.
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Corollary 6. (J.M. Munoz-Escolano, J. Otal, N.N. Semko [19]) Let F be
a field, A a vector space over F and G a locally soluble periodic subgroup of
GL(F,A). Then the following conditions are equivalent:

i) G satisfies the weak minimal condition on subgroups of infinite central
dimension;

ii) G satisfies the weak maximal condition on subgroups of infinite central
dimension;

iii) G satisfies the minimal condition on subgroups of infinite central dimen-
sion.

Corollary 7. (J.M.Munoz-Escolano, J.Otal, N.N.Semko [19]) Let F be a
field, A a vector space over F and G a locally nilpotent subgroup of GL(F,A).
Suppose that G has infinite central dimension. Then the following conditions
are equivalent:

i) G satisfies the weak minimal condition on subgroups of infinite central
dimension;

ii) G satisfies the weak maximal condition on subgroups of infinite central
dimension;

iii) G satisfies the minimal condition on subgroups of infinite central dimen-
sion;

iv) G is Chernikov; and

v) G satisfies the minimal condition on all subgroups.

For non-periodic groups, the situation is more complicated. The study of
locally nilpotent linear groups satisfyingWmin− icd and Wmax− icd has been
initiated in the papers [20], [21]. The first result shows that nilpotent groups
with these conditions are minimax.

Theorem 9. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [20]) Let
F be a field, A a vector space over F and G a subgroup of GL(F,A) having
infinite central dimension. Suppose that H is a normal subgroup of G such that
G/H is nilpotent. If G satisfies either Wmin− icd or Wmax− icd, then G/H
is minimax. In particular, if G is nilpotent, then G is minimax.

Further results deal with to the case of prime characteristic.

Theorem 10. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [20]) Let
F be a field of prime characteristic, A a vector space over F and G a locally
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nilpotent subgroup of GL(F,A) having infinite central dimension. if G satisfies
either Wmin− icd or Wmax− icd, then G/Tor(G) is minimax. In particular,
if Tor(G) has infinite central dimension, then G is minimax.

Here Tor(G) is the maximal normal periodic subgroup of G. If G is locally
nilpotent group, then Tor(G) consists of all elements of finite order, so that
G/Tor(G) is torsion-free.

Let F be the class of finite groups. If G is a group, then the intersection GF

of all subgroups of G, having finite index, is called the finite reidual of G.

Theorem 11. (L.A.Kurdachenko, J.M.Munoz-Escolano and J.Otal [20])
Let F be a field of prime characteristic, A a vector space over F and G a locally
nilpotent subgroup of GL(F,A) having infinite central dimension. If G satisfies
either Wmin− icd or Wmax− icd, then G/GF is minimax and nilpotent.

Let N be the class of nilpotent groups. The intersection GN of all normal
subgroups H such that G/H is nilpotent, is called the nilpotent residual of G.

Theorem 12. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [20]) Let
F be a field of prime characteristic, A a vector space over F and G a locally
nilpotent subgroup of GL(F,A) having infinite central dimension. If G satisfies
either Wmin− icd or Wmax− icd, then G/GN is minimax.

For the case of non-finitary linear groups, the following results were obtained.

Theorem 13. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal, N.N.
Semko [21]) Let F be a field, A a vector space over F and G a locally nilpotent
subgroup of GL(F,A) having infinite central dimension. If G is not finitary and
satisfies Wmin− icd, then G is minimax.

For the case of hypercentral groups and prime characteristic the study was
completed. In fact, the following holds

Theorem 14. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal, N.N.
Semko [21]) Let F be a field of prime characteristic, A a vector space over
F and G a hypercentral subgroup of GL(F,A) having infinite central dimension.
If G nsatisfies Wmin− icd, then G is minimax.

We observe that for the conditionWmax−icd a similar result is not true. In
the paper [21], a hypercentral linear group over the field of prime characteristic
sarisfying Wmax− icd which is not minimax was constructed.

The paper [22] began the study of soluble linear groups satisfying Wmin−
icd. The following main result of this paper shows that their structure is rather
similar to the structure of finite dimenional soluble groups.

Let G ≤ GL(F,A). We recall that an element x ∈ G is called unipotent if
there is a positive integer n such that A(x − 1)n = 0. A subgroup H of G is
called unipotent if every element of H is unipotent. A subgroup H of G is called
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boundedly unipotent if there is a positive integer n such that A(x− 1)n = 0 for
each element x ∈ H.

Theorem 15. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [22]) Let
F be a field, A a vector space over F and G a soluble subgroup of GL(F,A).
Suppose that G has infinite central dimension and satisfies Wmin − icd. If G
is not minimax, then G satisfies the following conditions:

i) G has a normal boundedly unipotent subgroup L such that G/L is mini-
max;

ii) L has finite central dimension;

iii) if charF = 0, then L is nilpotent torsion-free subgroup;

iv) if charF = p for some prime p, then L is a nilpotent bounded p-subgroup;

v) G is a finitary linear group.

If G is a subgroup of GL(F,A), then G acts trivially on the factor-space
A/A(ωFG). Hence G properly acts on the subspace A(ωFG). As in paper [23],
we define the augumentation dimension of G to be the F -dimension of A(ωFG)
and denote it by augdimF (G). This concept is opposite in some sense to the
concept of central dimension. As for groups having finite central dimension, a
group G of finite augmentation dimension contains a normal abelian subgroup C
such that G/C is an ordinary finite dimensional group. Moreover, if charF = 0,
then C is torsion-free, if charF = p > 0, then C is an elementary abelian
p-subgroup. In the paper [23] linear groups in which the set of all subgroups
having infinite augmentation dimension satisfies the minimal condition have
been considered. In the paper [24] linear groups in which the set of all subgroups
having infinite augmentation dimension satisfies some rank restrictions have
been considered.

We can define finitary linear groups as the groups whose cyclic (and therefore
finitely generated) subgroups have finite augmentation dimension. Therefore the
following groups are the antipodes to finitary linear groups.

We say that a group G ≤ GL(F,A) is called antifinitary linear group if each
proper infinitely generated subgroup of G has finite augmentation dimension (a
subgroup H of an arbitrary group G is called infinitely generated if H has no a
finite set of generators). These groups have been studied in the paper [25]. This
study splits into two cases depending on whether or not the group is finitely
generated.

Let G ≤ GL(F,A). Then the set

FD(G) = {x ∈ G | < x > has finite augmentation dimension}
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is a normal subgroup of G.
Let D be a divisible abelian group and G a subgroup of Aut(D). Then D

is said to be G-divisibility irreducible if D has no proper divisible G-invariant
subgroups.

Theorem 16. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [25]) Let
F be a field, A a vector space over F and G a infinitely generated locally gen-
eralized radical subgroup of GL(F,A). Suppose that G is not finitary and has
infinite augmentation dimension. If G is not minimax, then G satisfies the fol-
lowing conditions:

1) If the factor-group G/FD(G) is infinitely generated, then G is a Prüfer
p-group for some prime p.

2) If G/FD(G) is finitely generated, then G satisfies the following conditions:

2a) G = K < g > where K is a divisible abelian Chernikov subgroup and
g is a p-element, where p is a prime such that p = |G/FD(G)|;

2b) K is a normal subgroup of G;

2c) K is G-divisibly irreducible;

2d) K is a q-subgroup for some prime q;

2f) if q = p, then K has finite special rank equal to pm−1(p − 1) where
pm = |< g > /C < g > (K)|;

2g) if q 6= p, then K has finite special rank o(q, pm) where as above pm =
|< g > /C < g > (K)| and o(q, pm) is the order of q modulo pm.

Theorem 17. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [25]) Let
F be a field, A a vector space over F and G a finitely generated radical sub-
group of GL(F,A). Suppose that G is not finitary and has infinite augmentation
dimension. Then the following conditions holds:

1) augdimFFD(G) is finite;

2) G has a normal subgroup U such that G/U is polycyclic;

3) there is a positive integer m such that A(x− 1)m =< 0 > for each x ∈ U ;
in particular, U is nilpotent;

4) U is torsion-free if charF = 0 and is a bounded p-subgroup if charF =
p > 0;

5) if
< 0 >= Z0 ≤ Z1 ≤ · · · ≤ Zm = U (1)
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is the upper central series of U , then Z1/Z0, . . . , Zm/Zm−1 are finitely
generated Z < g >-modules for each element g ∈ G\FD(G). In particular,
U satisfies the maximal condition on < g >-invariant subgroups for each
element g ∈ G\FD(G).
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Abstract. Generalized Baumslag-Solitar groups are the fundamental groups of finite graphs
of groups with infinite cyclic vertex and edge groups. These groups have interesting group the-
oretic and algorithmic properties and they also have close connections with algebraic topology.
Here we present an introduction to the theory with an account of recent results.
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1 Graphs of Groups

Let Γ be a connected graph, with loops and multiple edges allowed, and
write

V (Γ) and E(Γ)

for the respective sets of vertices and edges of Γ. If e ∈ E(Γ), we assign endpoints
e+, e− and hence a direction to e,

•e+•e− //

To each e ∈ E(Γ) and x ∈ V (Γ) we assign groups He and Gx and we assume
there are injective homomorphisms

φe− : He → Ge− and φe+ : He → Ge+ .

Then the system

G = (Γ, φe− , φe+ , He, Gx | e ∈ E(Γ), x ∈ V (Γ)),

ia called a graph of groups.
Next choose a maximal subtree T in Γ. Then the fundamental group of the

graph of groups G is the group

G = π1(G)

http://siba-ese.unisalento.it/ c© 2010 Università del Salento
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which is generated by the groups and elements

Gx and te, (x ∈ V (Γ), e ∈ E(Γ\T )),

subject to the defining relations

hφe− = hφe+ , (e ∈ E(T )), (hφe+ )te = hφe− , (e ∈ E(Γ\T )),

for all h ∈ He. In the case where Γ is a tree, G is called a tree product.

The following result is fundamental – see [3], [5], [15].

(1.1). Up to isomorphism the group G = π1(G) is independent of the choice of
maximal subtree.

Special cases of interest

(i) Let Γ have two vertices and a single edge e. Then G is the generalized free
product

G = Ge− ∗H Ge+

where the subgroup H = He is amalgamated by means of the injective homo-
morphisms φe− and φe+ .

(ii) Let Γ have one vertex x and one edge e, i.e., it is a loop. Then G is the
HNN-extension

G =< te, Gx | (hφe+ )te = hφe− , h ∈ He > .

Here Gx is the base group, Hφ
e− and Hφ

e− are the associated subgroups, and
te is the stable element.

We note an important property of graphs of groups.

(1.2). Let G = (Γ, φe− , φe+ , He, Gx | e ∈ E(Γ), x ∈ V (Γ)) be a graph of groups
and let Γ0 be a connected subgraph of Γ. Define G0 = π1(G0) where

G0 = (Γ0, φe− , φe+ , He, Gx | e ∈ E(Γ0), x ∈ V (Γ0)).

Then the natural homomorphism from G0 to G is injective. In particular each
Gx is isomorphic with a subgroup of G.

For a detailed account of the theory of graphs of groups the reader may
consult [3], [5], [15].
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2 Generalized Baumslag-Solitar groups

A Baumslag-Solitar group is a 1-relator group with a presentation of the
form

BS(m,n) =< t, x | (xm)t = xn >,

where m,n ∈ Z∗ = Z\{0}: these groups seem to have first appeared in the
literature in [1], but they may be of greater antiquity.

A similar type of 1-relator group is

K(m,n) =< x, y | xm = yn >,

where m,n ∈ Z∗. When m and n are relatively prime, this is a torus knot group.

The groups BS(m,n) and K(m,n) are the fundamental groups of graphs of
infinite cyclic groups where the graph is a 1-loop or a 1-edge respectively. There
is a natural way to generalize these groups.

Let Γ be a finite connected graph. Associate infinite cyclic groups < gx >
and < ue > to each vertex x and edge e and define injective homomorphisms

< ue > → < ge− > and < ue > → < ge+ >

by the assignments

ue 7→ (ge−)
ω−(e) and ue 7→ (ge+)

ω+(e)

where ω−(e), ω+(e) ∈ Z∗. So the edge e is assigned a weight (ω−(e), ω+(e)) and
the graph of groups is determined by a weight function

ω : E(Γ) → Z∗ × Z∗,

with values

ω(e) = (ω−(e), ω+(e)).

We will write the weighted graph of infinite cyclic groups in the form

(Γ, ω)

and refer to it as a generalized Baumslag-Solitar graph or GBS-graph.

Definition 1. A generalized Baumslag-Solitar group, or GBS-group, is the
fundamental group of a GBS-graph (Γ, ω), in symbols

G = π1(Γ, ω).
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To obtain a presentation of G choose a maximal subtree T in Γ; then G has
generators

te, gx, e ∈ E(Γ\T ), x ∈ V (Γ),

and defining relations

(ge−)
ω−(e) = (ge+)

ω+(e), e ∈ E(T ),

(ge−)
ω−(e) = ((ge+)

ω+(e))te , e ∈ E(Γ\T ).

Note that up to isomorphism G does not depend on the choice of the maximal
subtree.

Examples

1. If Γ is a 1-loop with weight (m,n), then G = BS(n,m).

2. If Γ is a 1-edge with weight (m,n), then G = K(m,n).

3. As a more complex example, consider the GBS-graph shown below.

•y•x

•u

•z
s(4,−1)

ff

t(20,12)
44jjjjjjjjjjjjjjj

(4,4) **TTTTTTTTTTTTTTT (5,3)

OO(2,−3)

&&
r(2,2)

66

Choose as the maximal subtree T the path xyzu and let the stable letters be
r, s, t as indicated. Then the corresponding GBS-group G has a presentation
with generators

r, s, t, gx, gy, gz, gu

and relations

(g2x)
r = g2x, g

2
x = g−3

y , g4y = g4z , g
5
z = g3u, (g

12
u )t = g20y , (g

4
x)

s = g−1
y .

3 Some Properties of GBS-groups

We list some known properties of GBS-groups. Let G = π1(Γ, ω) be a GBS-
group.

(3.1). The group G is finitely presented and torsion-free.

For if F is a finite subgroup of G, it intersects each conjugate of a vertex
group trivially, which implies that it is free and therefore trivial ([5], p.212).
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(3.2). If Γ is a tree, so that G is a GBS-tree product, then G is locally extended
residually finite. Hence G is hopfian.

Recall here that a group is locally extended residually finite (or LERF) if every
finitely generated subgroup is closed in the profinite topology.

Proof of (3.2). Since Γ is a tree and < gx > ∩ < gy > 6= 1 for all x, y ∈ V (Γ),
each vertex generator has a positive power lying in the centre. Hence Z(G) =<
z > 6= 1 and G/ < z > is the fundamental group of a graph of finite cyclic groups.
It follows that G/ < z > is virtually free (see Karrass, Pietrowski and Solitar
[9]). If n > 0, then G/ < zn > is also virtually free. Since finitely generated free
groups are LERF, (M. Hall [8]), G is LERF. �

Corollary 1. The generalized word problem soluble in any GBS-tree prod-
uct.

GBS-tree products have another strong residual property.

(3.3). A GBS-tree product G is conjugacy separable, i.e., if two elements are

conjugate in every finite quotient of G, then they are conjugate in G.

This follows from a theorem of Kim and Tang [10]: if G is a (finite) tree
product of groups each of which is finitely generated torsion-free nilpotent and
if the amalgamations are cyclic, then G is conjugacy separable.

Corollary 2. The conjugacy problem is soluble in any GBS-tree product.

Remark. In general BS(m,n) is not hopfian, and hence is not even residually
finite. For example, let G =< t, g| (gm)t = gn > where gcd(m,n) = 1. Define
an endomorphism θ of G by

tθ = t, gθ = gn.

Then θ is a surjective since Im(θ) contains gn and also (gn)t
−1

= gm, so g ∈
Im(θ). But θ is not an automorphism of G if m,n 6= ±1, since [g, gt

−1

]θ = 1 and
[g, gt

−1

] 6= 1.

The next result is an important characterization of GBS-groups due to
Kropholler [11].

(3.4). The non-cyclic GBS-groups are exactly the finitely generated groups of
cohomological dimension 2 that have an infinite cyclic subgroup which is com-
mensurable with its conjugates, i.e., intersecting each conjugate non-trivially.

Kropholler also showed that there is a type of Tits alternative for GBS-
groups, (Kropholler [11]).
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(3.5). The second derived subgroup of a GBS-group is free.

Since free groups are residually soluble, we deduce from the last result:

Corollary 3. Every GBS-group is residually soluble.

The subgroups of a GBS-group are of very restricted type, as the next result
shows.

(3.6). Let H be a finitely generated subgroup of a GBS-group G. Then H is
either free or a GBS-group.

Proof. Assume that H is not free, so G is certainly non-cyclic. Now cd(H) ≤
cd(G) = 2 . If cd(H) = 1, then by a result of Stallings and Swan the group
H is free, since it is torsion-free: (for these results see [2], Chapter II). By this
contradiction cd(H) = 2. Now H must contain a commensurable element since
otherwise it is free. Therefore by (3.4) H is a GBS-group. �

Corollary 4. A GBS-group is coherent, i.e., all its finitely generated sub-
groups are finitely presented.

Since GBS-groups have cohomological dimension 2 in general, it is natural
to enquire about their (co)homology in dimensions 1 and 2. We begin with
homology. Recall that

H1(G) ≃ Gab = G/G′ and H2(G) ≃M(G),

the Schur multiplier. We will investigate these groups in the next two sections.

4 The Abelianization of a GBS-group

Let G = π1(Γ, ω) be a GBS-group defined with respect to a maximal subtree
T of Γ. Then Gab = G/G′ is the finitely generated abelian group with generators

te, gx where e ∈ E(Γ\T ), x ∈ V (Γ),

and (abelian) defining relations

(ge−)
ω−(e) = (ge+)

ω+(e), e ∈ E(Γ).

To find the complete structure of Gab the weight matrix W must be transformed
into Smith normal form. This matrix has rows indexed by edges and columns
indexed by vertices: row e has entries

0, . . . , 0, ω−(e)− ω+(e), 0 . . . , 0
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if e is a loop, and

0, . . . , 0, ω−(e), 0 . . . , 0,−ω+(e), 0, . . . 0

if e is not a loop.
Let

r0(G)

denote the torsion-free rank of Gab, i.e., the rank of Gab modulo its torsion-
subgroup. A formula for r0(G) can be found without resorting to the lengthy
process of determining the Smith normal form of the matrix W . Since the te,
(e ∈ E(Γ\T )), are linearly independent, linear algebra shows that

r0(G) = |E(Γ)| − |E(T )|+ |V (Γ)| − rank(W ) = |E(Γ)|+ 1− rank(W ).

Let W0 be the submatrix of W consisting of the rows which correspond to
edges of the maximal subtree T . Then W0 gives the structure of (G0)ab where
G0 = π1(T, ω). Since each pair of generators of G0 is linearly dependent, we
have r0(G0) = 1 and rank(W0) = |V (Γ)| − 1. Now rank(W ) = rank(W0) or
rank(W0) + 1, depending on whether each non-tree row of W is linearly depen-
dent on the rows of W0 or not. Therefore r0(G) = |E(Γ)| − |V (Γ)|+ 1 + ǫ
where ǫ = 1 if rank(W ) = rank(W0) and otherwise ǫ = 0.

Tree dependence
Let e ∈ E(Γ\T ) and put e− = x and e+ = y; then there is a unique path from

x to y in T . The defining relations associated with this path lead to a relation
xh = yk, (h, k ∈ Z∗). (If x = y, then h = k). Let ω(e) = (m,n), so that xm ≡ yn

mod G′. We will say that e is T -dependent if (m,n) is a rational multiple of
(h, k), (which means that m = n if e− = e+). Otherwise e is T-independent. If
every non-tree edge of Γ is T-dependent, then (Γ, ω) is said to be tree dependent.
By (4.1) below this property does not dependent on the tree T . If (Γ, ω) is tree
dependent, then rank(W ) = rank(W0), and otherwise rank(W ) = rank(W0)+1.
Thus we obtain:

(4.1). Let G = π1(Γ, ω) be a GBS-group defined relative to a maximal subtree
T . Then

r0(G) = |E(Γ)| − |V (Γ)|+ 1 + ǫ,

where ǫ = 0 or 1, the rule being that ǫ = 1 if and only if (Γ, ω) is tree dependent.

For example, consider Example 3 above. Here the maximal subtree is the
path xyzu. All the non-tree edges with the exception of 〈y, x〉 are T-dependent,
so (Γ, ω) is not tree dependent. Therefore ǫ = 0 and r0(G) = |E(Γ)|−|V (Γ)|+1 =
3 by (4.1).
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5 The Schur multiplier of a GBS-Group

Next we consider how to compute the Schur multiplier of a GBS-group. First
recall an inequality which is valid for any finitely presented group.

(5.1). Let G be a finitely presented group with n generators and r relations.
Then

n− r ≤ r0(G)− d(M(G)),

where d(H) denotes the minimum number of generators of H.

Proof. Let 1 → R→ F → G→ 1 be a presentation of G where F is free of rank
n and R is the normal closure of an r-element subset of F . Then M(G) is given
by Hopf’s formula

M(G) ≃ (F ′ ∩R)/[F,R].

Now r ≥ d(R/[F,R]), and since F/F ′ is free abelian, we have

d(R/[F,R]) = d((F ′ ∩R)/[F,R]) + d(F ′R/F ′)

= d(M(G)) + n− r0(F/F
′R).

This shows that r ≥ d(M(G)) + n− r0(G), from which the result follows. �

Observe the consequence that there is a least upper bound for the integer
n− r over all finite presentations of G: this is the deficiency of G,

def(G).

Now apply (5.1) to a GBS-group G = π1(Γ, ω), using the standard presen-
tation with respect to a maximal subtree T . Here n = |V (Γ)| + |E(Γ\T )| and
r = |E(Γ)|, so that

n− r = |V (Γ)| − |E(T )| = 1

and we have def(G) ≥ 1. Then d(M(G)) ≤ r0(G)− (n− r) = r0(G)−1 by (5.1).
Therefore we have:

(5.2). If G is a GBS-group, then d(M(G)) ≤ r0(G) − 1. Thus M(G) = 0 if
r0(G) = 1.

Corollary 5. If G is a GBS-tree product, then M(G) = 0.

On the other hand, a Baumslag-Solitar group can have non-zero Schur mul-
tiplier.

(5.3). Let G = BS(m,n). Then M(G) = 0 if m 6= n and M(G) ≃ Z if m = n.
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Proof. Suppose that m 6= n. Then Gab ≃ Z ⊕ Z|m−n|, so that r0(G) = 1 and
M(G) = 0 by (5.2). Now assume that m = n. Note that r0(G) = 2 in this case
and hence d(M(G)) ≤ 2− 1 = 1; thus it is enough to show that r0(M(G)) = 1.
From the exact sequence 1 → G′ → G → Gab → 1 we obtain the 5-term exact
homology sequence

M(G) →M(Gab) → G′/[G′, G] → Gab → Gab → 1.

Now G′/[G′, G] is finite since

[x, t]m ≡ [xm, t] ≡ x−m(xm)t ≡ 1 mod [G′, G].

Also r0(M(Gab)) = 1, because r0(G) = 2. Hence Im(M(G) → M(Gab)) is
infinite. Thus we have 1 ≥ d(M(G)) ≥ r0(M(G)) ≥ 1, so that r0(M(G)) = 1
and M(G) ≃ Z. �

In fact there is a remarkably simple formula for the Schur multiplier of an
arbitrary GBS-group ([14]).

(5.4). If G is an arbitrary GBS-group, then M(G) is free abelian of rank
r0(G)− 1.

The proof of this result uses the 5-term homology sequence and the Mayer-
Vietoris sequence for the homology of a generalized free product: for details see
[14].

Corollary 6. If G is any GBS-group, then def(G) = 1.

For by (5.1) and (5.2) we have

1 ≤ def(G) ≤ r0(G)− d(M(G)) = r0(G)− r0(G) + 1 = 1.

Corollary 7. Let Γ be a bouquet of k loops. Then M(G) ≃ Zℓ where ℓ =
k + 1 if each loop has equal weight values and otherwise ℓ = k.

The underlying reason here is that a bouquet of loops is tree dependent if and
only if each loop has equal weight values.

For example, consider the GBS-group G in Example 3. Here r0(G) = 3 and
thus M(G) ≃ Z⊕ Z.

Central extensions
Knowledge of the Schur multiplier of a GBS-group G allows one to study

central extensions of an arbitrary abelian group C by G. By the Universal
Coefficients Theorem we have

H2(G,C) ≃ Ext(Gab, C)⊕Hom(M(G), C).



46 Derek J.S. Robinson

Now(5.4) shows that Hom(M(G), C) ≃
⊕
Cr0(G)−1, while Gab ≃ Zr0(G) ⊕ F

with F finite. Hence Ext(Gab, C) ≃ Ext(F,C), which can be computed if the
structure of F is known. On the basis of these remarks we can characterize those
GBS-groups G for which every central extension by G splits.

(5.5). Every central extension by a generalized Baumslag-Solitar group G splits,
i.e., is a direct product, if and only if Gab is infinite cyclic.

Proof. Let C be a trivial G-module and denote the periodic subgroup of Gab

by F ; thus Gab ≃ Zr0(G) ⊕ F where F is finite. Since H2(G,C) ≃ Ext(F,C) ⊕
Cr0(G)−1, we have H2(G,C) = 0 for every C if and only if r0(G) = 1 and
Ext(F,C) = 0 for all C. By taking C to be Z, we see that this happens precisely
when r0(G) = 1 and F = 1, i.e., Gab ≃ Z. �

6 Nilpotent quotients of GBS-Tree Products

Let G = π1(Γ, ω) be a GBS-group where Γ is a tree and let Ḡ be a nilpotent
quotient of G. Then Ḡ has a central cyclic subgroup Z̄ which contains a positive
power of every generator. Thus Ḡ/Z̄ is a finitely generated periodic nilpotent
group, so it is finite. Clearly r0(G) = 1 , which implies that all lower central
factors of Ḡ after the first are finite (by the usual tensor product argument for
lower central factors). Hence r0(Z̄) = 1, which shows that Ḡ is central cyclic-
by-finite, and hence finite-by-cyclic. Thus we have:

(6.1). A nilpotent quotient of a GBS-tree product is finite-by-cyclic.

Information about the second derived quotient group is also available.

(6.2). If G is a GBS-tree product, then G/G′′ is virtually abelian.

Proof. Write Ḡ = G/G′′ and note that there exists an element u ∈ G such
that G/< u > G′ is finite. Next let x, y, z be generators of G; since G is a
tree product, < x > ∩ < y > ∩ < z > 6= 1. Hence ([x, y]<z>)G′′/G′′ is finitely
generated and it follows that [x, y]GG′′/G′′ is finitely generated, as is G′/G′′

since G/G′′ satisfies max-n. Also zm centralizes G′/G′′ for some m > 0, from
which it follows that < zm > G′/G′′ is abelian and clearly it has finite index in
G. �

Note that G′′ is a free group by (3.5), so further derived factors may be
complex. Furthermore the next result shows that one cannot expect to be able
to say anything about finite factors of a GBS-group.

(6.3). Every finite group is a quotient of a GBS-tree product.

Proof. Let F = {f1, . . . , fn} be an arbitrary finite group withmi = |fi|. Let T be
the line graph with edges < f1, f2 >,< f2, f3 >, . . . , < fn−1, fn >, the weight of
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edge < fi, fi+1 > being (mi,mi+1). By Von Dyck’s theorem there is a surjective
homomorphism from π1(T, ω) to F such that gfi 7→ fi since f

mi

i = 1 = f
mi+1

i+1 .
�

7 Geometric quotients of GBS-groups

We now restrict attention to quotients of a GBS-group which arise in a
natural way from the underlying GBS-graph. Let (Γ, ω) and (Γ̄, ω̄) be GBS-
graphs and let G, Ḡ be the corresponding GBS-groups defined with respect to
the maximal subtrees T, T̄ . A pair of functions (γ, δ),

γ : V (Γ) → V (Γ̄), δ : E(Γ\T ) → E(Γ̄\T̄ )

is called a vertex-edge pair for (Γ, ω, T ), (Γ̄, ω̄, T̄ ) if
(i) (δ(e))− = γ(e−) and (δ(e))+ = γ(e+), e ∈ E(Γ\T );
(ii) if < x, y >∈ E(T ) and γ(x) 6= γ(y), then < γ(x), γ(y) >∈

E(T̄ ).
Thus non-tree edges of Γ are mapped to non-tree edges of Γ̄ and an edge in T
is mapped to an edge in T̄ provided that γ has distinct values at the endpoints.

Definition 2. A homomorphism between the GBS-groups above

θ : π1(Γ, ω) → π1(Γ̄, ω̄)

is called geometric if there is a vertex-edge pair (γ, δ) such that

gθx = g
r(x)
γ(x), x ∈ V (Γ)

tθe = t
s(e)
δ(e), e ∈ E(Γ\T ),

where r(x), s(e) ∈ Z. Thus θ is determined by the parameters

(γ, δ, r(x), s(e) | x ∈ V (Γ), e ∈ E(Γ\T )),

which are of course subject to certain restrictions.

A quotient group G/K of a GBS-group G is called a geometric quotient if
K = Ker(θ) where θ is a surjective geometric homomorphism from G to some
GBS-group. (Note that in general the image of a geometric homomorphism need
not be a GBS-group).
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Some natural examples of geometric homomorphisms

1. Loop deletion
Suppose that the graph Γ has two loops e, e′ through the same vertex and

that e has weight (1,1). Then deleting e and mapping the associated generator
te to 1 gives rise to a geometric homomorphism θ : π1(Γ, ω) → π1(Γ̄, ω̄) where
Γ̄ is Γ with e removed and ω̄ is the restriction of ω. Here the vertex pair fixes
vertices and maps e and e′ to e′.

2. Loop identification
Suppose that the graph Γ has two loops e, e′ through a vertex and that they

have the same weight. Identify the two loops to form a new graph Γ̄, which is Γ
with the loop e′ removed. Map te and te′ to te: here the vertex pair fixes vertices
and maps e and e′ to e, with other edges fixed.

3. Pinch maps
Let G = π1(Γ, ω) and let T be a maximal subtree in Γ. Choose any e ∈ E(Γ) and
write m = ω−(e), n = ω+(e). Let d be a common divisor of m and n. Define a
new weight function ω̄ on Γ by replacing the weight (m,n) by (m/d, n/d), with
all other weights unchanged. Write Ḡ = π1(Γ, ω̄). Then there is a surjective
homomorphism

θ : G→ Ḡ

in which
x 7→ x̄, y 7→ ȳ.

Indeed x̄m/d = ȳn/d implies that x̄m = ȳn, while (x̄m/d)t = ȳn/d implies that
(x̄m)t = ȳn. Note that θ is a geometric homomorphism induced by the vertex-
edge pair of identity functions. Also, if e ∈ E(T ), then

[xm/d, yn/d]θ = 1

and [xm/d, yn/d] 6= 1 if d 6= ±1. There is a similar discussion if e 6∈ E(T ). Hence
θ is not an isomorphism if d 6= ±1. Call θ a pinch map on e.

4. Edge contractions
Let G = π1(Γ, ω) and let T be a maximal subtree of Γ. Suppose that e =

< y, z >∈ E(T ) has relatively prime weights m = ω−(e), n = ω+(e). We aim
to define a contraction along the edge e =< y, z >. The diagram which follows
exhibits a part of the graph Γ.

•y•x •z •u
(p,q)

//
(m,n)

//
(r,s)

//

Form a new graph Γ̄ by deleting the edge e and adjusting the weights of adjacent
edges appropriately: the relevant segment of Γ̄ is
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•b•a •c
(p,qn)

//
(rm,s)

//

Now define a vertex pair (γ, δ) by

γ(x) = a, γ(y) = b, γ(z) = b, γ(u) = c,

with other vertices fixed and δ preserving non-tree edges. A homomorphism

θ : G→ Ḡ

is defined by the rules

gx
θ = ga, gy

θ = gb
n, gz

θ = gb
m, gu

θ = gc, . . . .

Then θ is a geometric homomorphism induced by (γ, δ): for example, the relation
gz

r = gu
s in G becomes gb

rm = gc
s in Ḡ. Since gcd(m,n) = 1, we have gb ∈

Im(θ), so θ is surjective. Finally, note that

[gy, gz]
θ = [gb

n, gb
m] = 1,

while if |m| 6= 1 and |n| 6= 1, then [gy, gz] 6= 1 and θ is not an isomorphism.
Notice that edge contraction does not decrease weights in absolute value. (In a
similar way it is possible to define a contraction along a loop.)

It is an important property of geometric homomorphisms that their com-
posites are also geometric.

(7.1) Let Gi = π1(Γi, ωi), i = 1, 2, 3, be GBS-groups with associated maximal
subtrees Ti, and let φi : Gi → Gi+1, i = 1, 2, be geometric homomorphisms with
parameters (γi, δi, ri(x), si(e)) relative to the Ti. Then the composite φ1φ2 is a
geometric homomorphism from G1 to G3 with parameters

(γ2γ1, δ2δ1, r1(x)r2(γ1(x)), s1(e)s2(δ1(e)).

Proof. First observe that (γ2γ1, δ2δ1) is a vertex-edge pair. For, if e ∈ E(Γ1\T1),
then (δ2δ1(e))

± = γ2(δ1(e)
±) = γ2γ1(e

±). Also, if 〈x, y〉 ∈ E(T1) and γ2γ1(x)
6= γ2γ1(y), then γ1(x) 6= γ1(y), so 〈γ1(x), γ1(y)〉 ∈ E(T2). Thus we have
〈γ2γ1(x), γ2γ1(y)〉 ∈ E(T3). Next, if x ∈ V (Γ1), then

(gx)
φ1φ2 = (g

r1(x)
γ1(x)

)φ2 = (gγ2γ1(x))
r1(x)r2(γ1(x)),

and there is a similar calculation for (te)
φ1φ2 . �
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8 GBS-Simple Groups and GBS-Free groups

Every GBS-group has Z as a quotient, although not necessarily as a geomet-
ric quotient. We will say that a GBS-group is GBS-simple relative to a maximal
subtree T if there are no surjective, geometric homomorphisms relative to T ,
with non-trivial kernel, from G to any non-cyclic GBS-group. Equivalently G
has no proper, non-cyclic, geometric GBS-quotients. (Here a quotient is called
proper if the associated normal subgroup is non-trivial). If a GBS-group has no
proper, non-cyclic GBS-quotients at all, whether geometric or not, it is called
GBS-free.

The following result, which is proved in [6], provides a complete classification
of the GBS-groups which are GBS-simple: it also shows that the properties
“GBS-free” and “GBS-simple” are identical.

(8.1). Let (Γ, ω) be a GBS-graph and let G = π1(Γ, ω) be the GBS-group de-
fined with respect to a maximal subtree T . Then the following statements are
equivalent:

(a) G is GBS-free;

(b) G is GBS-simple;

(c) there is a geometric isomorphism from G to one of the groups

BS(1, n),K(1, 1),K(p, q),K(p, pd), where n ∈ Z∗, p, q are

distinct primes and d > 0.

Thus, for example, K(2, 4), K(2, 3), BS(1, 3) are GBS-free, but K(4, 9) and
BS(2, 3) are not GBS-free. Notice that the theorem also shows that the property
GBS-simple is independent of the maximal subtree T .

Sketch of proof of (8.1).

Assume G is GBS-simple, but not cyclic. The idea of the proof is to show there
is a surjective, geometric homomorphism from G to a non-cyclic GBS-group
whose underlying graph is either a 1-edge or a 1-loop. This will show that there
is no loss in assuming the original graph to have one of these forms. Then these
special cases can be dealt with. The geometric homomorphisms used will be
composites of the special types (1)–(4) listed above: thus (7.1) is relevant.

Suppose first that Γ is a tree with more than one edge. Contract all edges
with a weight vaue ±1, which does not change G up to isomorphism. Thus
we can assume that there are no such edges. There must be some edges left,
otherwise the graph consists of a single vertex and G is infinite cyclic. If two or
more edges are left, pinch and contract all edges but one, noting that after a
pinch-contraction there are still no ±1 labels. The resulting graph has a single
edge and the group is non-cyclic, so we have reduced to the case of a 1-edge.
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Now suppose Γ is not a tree and let T be a maximal subtree. Pinch and
contract edges in T to a single vertex to get a bouquet of loops. Note that the
group is non-cyclic.

From now on assume that Γ is a bouquet of k ≥ 2 loops. Moreover, by
pinching we can also assume that all the weights are relatively prime. The next
step is to establish

(8.2). If not all weights have absolute value 1, then G has a proper, non-cyclic
geometric quotient and hence is not GBS-simple.
Proof. We have

G =< t1, . . . , tk, x| (x
mi)ti = xni , i = 1, . . . , k >

where gcd(mi, ni) = 1. We can assume that |mi| ≤ |ni|. Define

ℓ = ℓcm(n1, . . . , nk);

then the assignments
x 7→ xℓ, ti 7→ ti

determine a geometric endomorphism θ of G, where the vertex pair consists of
identity functions. We have to prove that θ is surjective. First Gθ contains ti and
xℓ = x(ℓ/ni)ni , and hence x(ℓ/ni)mi . Since mi, ni are relatively prime, xℓ/ni ∈ Gθ.
Also the ℓ/ni are relatively prime, so x ∈ Gθ and Im(θ) = G. Notice in addition
that

[x, xti ]θ = [xℓ, (xℓ)ti ] = [xℓ, ((xni)ti)ℓ/ni ] = [xℓ, xmiℓ/ni ] = 1

and [x, xti ] 6= 1 if |mi| 6= 1. On the other hand, if all the |mi| = 1, then in a

similar way [xt
−1
i , xt

−1
i tj ] ∈ Ker(θ) and this is non-trivial if j 6= i. �

The discussion so far shows that we can assume that Γ is a bouquet of k ≥ 2
loops where |mi| = 1 = |ni| for all i. We can delete any loop with label (1,1).
Then, if there are multiple loops with label (1,−1), pass to a 1-loop quotient
with G = BS(1,−1) by identifying loops. The effect of the above analysis is
to reduce to the case of a 1-loop. Thus it remains to deal with the cases of a
1-loop and a 1-edge. In these cases a complete description of all GBS-quotients
is possible.

(8.3). There is a surjective homomorphism from G = K(m,n) to Ḡ = K(m′, n′),
where Ḡ non-cyclic, if and only if there exist integers k, r, s such that either

(i) m′ = m/ks, n′ = n/kr and gcd(r,m/k) = 1 = gcd(s, n/k),

or
(ii) m′ = n/kr, n′ = m/ks and gcd(r,m/k) = 1 = gcd(s, n/k).
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The sufficiency of the conditions in the theorem is proved by observing that
if m,n are relatively prime and p divides m, then there is a surjective geometric
homomorphism

θ : K(m,n) −→ K(
m

p
, n)

in which x 7→ x̄, y 7→ ȳp, where x, y and x̄, ȳ are the respective generators of
the groups G, Ḡ.

(8.4). There is a surjective homomorphism θ from BS(m,n) to BS(m̄, n̄) if
and only if m̄ = m/q and n̄ = n/q or m̄ = n/q and n̄ = m/q for some integer
q dividing m and n.

Sketch of proof

Let G =< t, x > and Ḡ =< t̄, x̄ > be the two groups and assume there is a
surjective homomorphism from G to Ḡ. To prove the result we will produce
invariants of the groups. An obvious one is obtained from

Gab ≃ Z× Z|m−n|.

Since θ maps Gab onto Ḡab, we see that m̄ − n̄ divides m − n. Assume that
m 6= n: the case where m = n requires a special argument.

Next we analyze the structure of G/T where T/(xG)′ is the torsion-subgroup
of xG/(xG)′. In fact

G/T ≃ < t > ⋉A

where A = Qπ is the additive group of rational numbers with π-adic denomi-
nators, π being the set of primes involved in n

m (after cancellation). Here t acts
on A by multiplication by n

m , this being the additive version of the relation
(xm)t = xn.

Note that xG is generated by all the elements commensurable with their
conjugates, (i.e., elements g such that < g > ∩ < g >h 6= 1, for all h ∈ G).
Therefore xG is characteristic in G. Hence θ maps < t > ⋉A onto < t̄ > ⋉Ā,
where Ā = Qπ̄ is the additive group of rational numbers with π̄-adic denomina-
tors, with π̄ the set of primes involved in n̄

m̄ . It follows that n
m = n̄

m̄ (or m̄
n̄ , in

which case a similar argument applies).

Let d = gcd(m,n) and write m′ = m
d and n′ = n

d : similarly define d̄, m̄′, n̄′.

Then m′

n′ = m̄′

n̄′ and hence m′ = m̄′ and n′ = n̄′. Therefore m̄ = d̄m/d and
n̄ = d̄n/d, so that

m− n

m̄− n̄
=
d

d̄
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is an integer and d̄ divides d. Writing q = d/d̄, we have m̄ = m
q and n̄ =

n
q . Conversely, if m,n, m̄, n̄ satisfy the conditions, then by pinching we get a

surjective homomorphism G→ G. �

The proof of (8.1) is now essentially complete: for fuller details see [6].

Remark. It follows from the discussions of (8.3) and (8.4) that (m,n) is an
invariant of the groups BS(m,n) and K(m,n) up to multiplication by −1 (of
either component in the second case) and interchange of components. It is more
challenging to find invariants of arbitrary GBS-groups, although one example is
the number of non-tree edges in the graph when the group is not BS(1,−1).

We end with what is probably a hard question. Is the isomorphism problem
soluble for GBS-groups, i.e., is there an algorithm which, when two GBS-graphs
(Γ, ω) and (Γ̄, ω̄) are given, decides if π1(Γ, ω) ≃ π1(Γ̄, ω̄) ? A positive answer
is known in various special cases, particularly in the case of GBS-trees – for
details see [4], [7], [12], [13].
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Abstract. If L is a lattice, a group is called L-free if its subgroup lattice has no sublattice
isomorphic to L. It is easy to see that L10, the subgroup lattice of the dihedral group of order
8, is the largest lattice L such that every finite L-free p-group is modular. In this paper we
continue the study of L10-free groups. We determine all finite L10-free {p, q}-groups for primes
p and q, except those of order 2α3β with normal Sylow 3-subgroup.
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1 Introduction

This paper contains the results presented in the second part of our talk
on ”L10-free groups” given at the conference ”Advances in Group Theory and
Applications 2009” in Porto Cesareo. The first part of the talk mainly contained
results out of [6]. In that paper we introduced the class of L10-free groups;
here L10 is the subgroup lattice of the dihedral group D8 of order 8 and for
an arbitrary lattice L, a group G is called L-free if its subgroup lattice L(G)
has no sublattice isomorphic to L. It is easy to see that L10 is the unique
largest lattice L such that every L-free p-group has modular subgroup lattice.
So the finite L10-free groups form an interesting, lattice defined class of groups
lying between the modular groups and the finite groups with modular Sylow
subgroups. Therefore in [6] we studied these groups and showed that every
finite L10-free group G is soluble and the factor group G/F (G) of G over its
Fitting subgroup is metacyclic or a direct product of a metacyclic {2, 3}′-group
with the (non-metacyclic) group Q8×C2 of order 16. However, we were not able
to determine the exact structure of these groups as had been done in the cases
of L-free groups for certain sublattices L of L10 (and therefore subclasses of the
class of L10-free groups) in [2], [5] and [1].

In the present paper we want to determine the structure of L10-free {p, q}-
groups where p and q are different primes. As mentioned above, the Sylow
subgroups of an L10-free group have modular subgroup lattice. Hence a nilpotent
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group is L10-free if and only if it is modular and the structure of these groups
is well-known [4, Theorems 2.3.1 and 2.4.4]. So we only have to study non-
nilpotent L10-free {p, q}-groups G. The results of [6] show that one of the Sylow
subgroups of G is normal – we shall choose our notation so that this is the
Sylow p-subgroup P of G – and the other is cyclic or a quaternion group of
order 8 or we are in the exceptional situation p = 3, q = 2. So there are only
few cases to be considered (see Proposition 1 for details) and we handle all of
them except the case p = 3, q = 2. Unfortunately, however, in the main case
that P = CP (Q) × [P,Q] where [P,Q] is elementary abelian and Q is cyclic,
the structure of G depends on the relation of q and |Q/CQ(P )| to p − 1 (see
Theorems 1–3). For example, if q ∤ p − 1, then CP (Q) may be an arbitrary
(modular) p-group, whereas CP (Q) usually has to be small if q | p − 1. The
reason for this and for similar structural peculiarities are the technical lemmas
proved in §2, the most interesting being that a direct product of an elementary
abelian group of order pm and a nonabelian P -group of order pn−1q is L10-free
if and only if one of the ranks m or n is at most 2 (Lemma 3 and Theorem 2).

All groups considered are finite. Our notation is standard (see [3] or [4])
except that we write H ∪K for the group generated by the subgroups H and K
of the group G. Furthermore, p and q always are different primes, G is a finite
{p, q}-group, P ∈ Syl p(G) and Q ∈ Syl q(G). For n ∈ N,

Cn is the cyclic group of order n,
Dn is the dihedral group of order n (if n is even),
Q8 is the quaternion group of order 8.

2 Preliminaries

By [6, Lemma 2.1 and Proposition 2.7], the Sylow subgroups of an L10-free
{p, q}-group are modular and one of them is normal. So we only have to consider
groups satisfying the assumptions of the following proposition.

Proposition 1. Let G = PQ where P is a normal modular Sylow p-
subgroup and Q is a modular Sylow q-subgroup of G operating nontrivially on
P . If G is L10-free, then one of the following holds.

I. P = CP (Q)× [P,Q] where [P,Q] is elementary abelian and Q is cyclic.

II. [P,Q] is a hamiltonian 2-group and Q is cyclic.

III. p > 3, Q ≃ Q8 and CQ(P ) = 1.

IV. p = 3, q = 2 and Q is not cyclic.
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Proof. Since Q is not normal in G, by [6, Proposition 2.6], Q is cyclic or Q ≃ Q8

or p = 3, q = 2. By [6, Lemma 2.2], [P,Q] is a hamiltonian 2-group or P =
CP (Q)× [P,Q] with [P,Q] elementary abelian. In the first case, q 6= 2 and hence
II. holds. In the other case, I. holds if Q is cyclic. And if Q ≃ Q8, then clearly
III. or IV. is satisfied or CQ(P ) 6= 1. In the latter case, φ(Q)EG and G/φ(Q) is
L10-free with nonnormal Sylow 2-subgroup Q/φ(Q); again [6, Proposition 2.6]
implies that p = 3 and hence IV. holds.

Definition 1. We shall say that an L10-free {p, q}-group G = PQ is of type
I, II, III, or IV if it has the corresponding property of Proposition 1.

We want to determine the structure of L10-free {p, q}-groups of types I–III.
So we have to study the operation of Q on [P,Q] and for this we need the
following technical results. The first one is Lemma 2.8 in [6].

Lemma 1. Suppose that G = (N1 ×N2)Q with normal p-subgroups Ni and
a cyclic q-group Q which operates irreducibly on Ni for i = 1, 2 and satisfies
CQ(N1) = CQ(N2). If G is L10-free, then |N1| = p = |N2| and Q induces a
power automorphism in N1 ×N2.

An immediate consequence is the following.

Lemma 2. Suppose that G = NQ with normal p-subgroup N and a cyclic
q-group Q operating irreducibly on N . If G is L10-free, then every subgroup of
Q either operates irreducibly on N or induces a (possibly trivial) power auto-
morphism in N ; in particular, G is L7-free.

Proof. Suppose that Q1 ≤ Q is not irreducible on N and let N1 be a minimal
normal subgroup of NQ1 contained in N . Then N = 〈Nx

1 | x ∈ Q〉 and so
N = N1 × · · · × Nr with r > 1 and Ni = Nxi

1 for certain xi ∈ Q. For i > 1,
CQ1

(Ni) = CQ1
(N1)

xi = CQ1
(N1) and hence Lemma 1 implies that a generator

x of Q1 induces a power automorphism in N1 ×Ni. This power is the same for
every i and thus x induces a power automorphism in N . This proves the first
assertion of the lemma; that G then is L7-free follows from [5, Lemma 3.1].

The following two lemmas yield further restrictions on the structure of L10-
free {p, q}-groups. In the proofs we have to construct sublattices isomorphic
to L10 in certain subgroup lattices. For this and also when we assume, for a
contradiction, that a given lattice contains such a sublattice, we use the standard
notation displayed in Figure 1 and the following obvious fact.

Remark 1. Let L be a lattice.
(a) A 10-element subset {A,B,C,D,E, F, S, T, U, V } of L is a sublattice

isomorphic to L10 if the following conditions are satisfied :

(1.1) D ∪ S = D ∪ T = S ∪ T = A and D ∩ S = D ∩ T = S ∩ T = E,

(1.2) D ∪ U = D ∪ V = U ∪ V = C and D ∩ U = D ∩ V = U ∩ V = E,
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(1.3) A ∪B = B ∪ C = F and A ∩B = A ∩ C = B ∩ C = D,

(1.4) S ∪ U = S ∪ V = T ∪ U = T ∪ V = F .

(b) Conversely, every sublattice of L isomorphic to L10 contains 10 pairwise
different elements A, . . . , V satisfying (1.1)–(1.4).

b

b

E

V

C

F

A

T U

B

D

Figure 1

b

b

S

Lemma 3. If G =M ×H where M is a modular p-group with |Ω(M)| ≥ p3

and H is a P -group of order pn−1q with 3 ≤ n ∈ N, then G is not L10-free.

Proof. By [4, Lemma 2.3.5], Ω(M) is elementary abelian. So G contains a sub-
group F = F1×F2 where F1 ≤M is elementary abelian of order p3 and F2 ≤ H
is a P -group of order p2q; let F1 = 〈a, b, c〉 and F2 = 〈d, e〉〈x〉 where a, b, c, d, e
all have order p, o(x) = q and x induces a nontrivial power automorphism in
〈d, e〉. We let E = 1 and define every X ∈ {A,B,C,D,U, V } as a direct product
X = X1 ×X2 with Xi ≤ Fi in such a way that (1.2) and (1.3) hold for the Xi

in Fi (i = 1, 2) and then of course also for the direct products in F . For this
we may take A1 = 〈a, b〉, B1 = 〈a, bc〉, U1 = 〈c〉, V1 = 〈ac〉, hence D1 = 〈a〉 and
C1 = 〈a, c〉, and similarly A2 = 〈d, e〉, B2 = 〈d, ex〉, U2 = 〈x〉, V2 = 〈dx〉, and
hence D2 = 〈d〉 and C2 = 〈d, x〉. Since q | p− 1, we have p > 2 and so we finally
may define S = 〈ae, bd〉 and T = 〈ae2, bd2〉.

Then A = 〈a, b, d, e〉 is elementary abelian of order p4 and D = 〈a, d〉;
therefore D∪S = D∪T = S ∪T = A. Since S, T,D all have order p2, it follows
that D∩S = D∩T = S ∩T = 1 and so also (1.1) holds. Now x and dx operate
in the same way on A and do not normalize 〈aei〉 or 〈bdi〉 (i=1,2); hence all
the groups S ∪ U , S ∪ V , T ∪ U , T ∪ V contain A = S ∪ Sx = T ∪ T x. Since
A ∪ U = A ∪ V = F , also (1.4) holds. Thus {A, . . . , V } is a sublattice of L(G)
isomorphic to L10.

We remark that Theorem 2 will show that if |Ω(M)| ≤ p2 or n ≤ 2 in the
group G of Lemma 3, then G is L10-free.
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Lemma 4. Let k, l,m ∈ N such that k ≤ l < m and qm | p−1. Suppose that
G = PQ where P =M1 ×M2 ×M is an elementary abelian normal p-subgroup
of G with |Mi| ≥ p for i=1,2 and |M | ≥ p2 and where Q is cyclic and induces
power automorphisms of order qk in M1, q

l in M2, and of order qm in M . Then
G is not L10-free.

Proof. We show that G/CQ(P ) is not L10-free and for this we may assume that
CQ(P ) = 1, that is, |Q| = qm. Then G contains a subgroup F = AQ where
A = 〈a, b, c, d〉 is elementary abelian of order p4 with a ∈ M1, b ∈ M2 and
c, d ∈ M . We let E = 1, D = 〈a, c〉, S = 〈acd, bcd−1〉, T = 〈acd2, bc−1d−1〉,
U = Q, V = Qac, C = DQ, B = DQbd and claim that these groups satisfy
(1.1)–(1.4).

This is rather obvious for (1.1) since |D| = |S| = |T | = p2 and, clearly,
D ∪ S = D ∪ T = S ∪ T = A. By [4, Lemma 4.1.1], Q ∪ Qac = [ac,Q]Q and
Q ∩ Qac = CQ(ac); since Q induces different powers in 〈a〉 and 〈c〉, we have
[ac,Q] = 〈a, c〉 and CQ(ac) = CQ(c) = 1. It follows that (1.2) is satisfied. Since
G/D ≃ 〈b, d〉Q and Q ∩ Qbd = CQ(bd) = 1, we have B ∩ C = D and so (1.3)
holds. Finally, since a generator of Q (or of Qac) induces different powers in Mi

and M , S ∪U and S ∪V contain 〈a, cd, b, cd−1〉 = A; similarly T ∪U and T ∪V
both contain 〈a, cd2, b, c−1d−1〉 = A. Thus also (1.4) holds and {A, . . . , V } is a
sublattice of L(G) isomorphic to L10.

To show that the groups in our characterizations indeed are L10-free, we
shall need the following simple properties of sublattices isomorphic to L10.

Lemma 5. Let M and N be lattices. If M and N are L10-free, then so is
M ×N .

Proof. This follows from the fact that L10 is subdirectly irreducible; see [5,
Lemma 2.2] the proof of which (for k = 7) can be copied literally.

Lemma 6. Let G be a group and suppose that A, . . . , V ∈ L(G) satisfy
(1.1)–(1.4). If W ≤ G such that F � W , then either S � W and T � W or
U �W and V �W .

Proof. Otherwise there would exist X ∈ {S, T} and Y ∈ {U, V } such that
X ≤W and Y ≤W . But then F = X ∪ Y ≤W , a contradiction.

Lemma 7. Let P E G such that |G : P | is a power of the prime q and
suppose that Q0 is the unique subgroup of order q in G. If P and G/Q0 are
L10-free, then so is G.

Proof. Suppose, for a contradiction, that {A, . . . , V } is a sublattice of L(G)
isomorphic to L10 and satisfying (1.1)–(1.4). Since P is L10-free, F � P . By
Lemma 6, either S and T or U and V are not contained in P and therefore have
order divisible by q. Hence either Q0 ≤ S ∩ T = E or Q0 ≤ U ∩ V = E; in both
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cases, G/Q0 is not L10-free, a contradiction.

In the inductive proofs that the given {p, q}-group G = PQ is L10-free, the
above lemma will imply that CQ(P ) = 1. And the final result of this section
handles a situation that shows up in nearly all of these proofs.

Lemma 8. Let G = PQ where P is a normal Sylow p-subgroup of G and
Q is a nontrivial cyclic q-group or Q ≃ Q8; let Q0 = Ω(Q) be the minimal
subgroup of Q.

Assume that every proper subgroup of G is L10-free and that there exists a
minimal normal subgroup N of G such that P = N × CP (Q0); in addition, if
Q ≃ Q8, suppose that every subgroup of order 4 of Q is irreducible on N .

Then G is L10-free.

Proof. Suppose, for a contradiction, that G is not L10-free and let {A, . . . , V } be
a sublattice of L(G) isomorphic to L10; so assume that (1.1)–(1.4) hold. Since
every proper subgroup of G is L10-free, F = G.

By assumption, G = NCG(Q0); hence Q
G
0 ≤ NQ0 and [P,Q0] ≤ N . Since

P = [P,Q0]CP (Q0) (see [4, Lemma 4.1.3]), it follows that

[P,Q0] = N and QG
0 = NQ0. (1)

Suppose first that E is a p-group. By Lemma 6, we have S, T � Pφ(Q) or
U, V � Pφ(Q); say U, V � Pφ(Q). Then U and V both contain Sylow q-
subgroups of G, or subgroups of order 4 of G if Q ≃ Q8. Since U ∩ V = E is a
p-group, C = U ∪ V contains two different subgroups of order q and hence by
(1), C ∩N 6= 1. Since U is irreducible on N , it follows that N ≤ C. Therefore
QG

0 = NQ0 ≤ C and so C contains every subgroup of order q of G. Since
S ∩ C = T ∩ C = E is a p-group, it follows that S and T are p-groups. Hence
A = S∪T ≤ P ; but then also B∩C = D ≤ A is a p-group and therefore B ≤ P .
So, finally, G = A ∪B ≤ P , a contradiction.

Thus E is not a p-group and therefore contains a subgroup of order q. If we
conjugate our L10 suitably, we may assume that

Q0 ≤ E. (2)

Every subgroup X of G containing Q0 is of the form X = (X ∩ P )Q1 where
Q0 ≤ Q1 ∈ Syl q(X); since X ∩ P = [X ∩ P,Q0]CX∩P (Q0) and [X ∩ P,Q0] ≤
X ∩N , it follows that

X ≤ CG(Q0) if Q0 ≤ X and X ∩N = 1. (3)

Since G = A∪B = A∪C = B ∪C, at least two of the three groups A,B,C are
not contained in Pφ(Q) and hence contain Sylow q-subgroups of G, or subgroups
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of order 4 of G if Q ≃ Q8. Similarly, two of the groups A,B,C are not contained
in CG(Q0) and hence, by (2) and (3), have nontrivial intersection with N . So
there exists X ∈ {A,B,C} having both properties. Since the Sylow q-subgroups
of X are irreducible on N , it follows that N ≤ X. Let Y, Z ∈ {A,B,C} with
Y 6= X 6= Z such that Y ∩N 6= 1 and Z contains a Sylow q-subgroup of G, or a
subgroup of order 4 of G if Q ≃ Q8. Then 1 < Y ∩N ≤ Y ∩X = D and hence
also Z ∩N 6= 1. Thus N ≤ Z and so

N ≤ X ∩ Z = D. (4)

Therefore S ∩N = S ∩D ∩N = E ∩N and U ∩N = E ∩N ; so if E ∩N = 1,
then (2) and (3) would imply that G = S ∪U ≤ CG(Q0), a contradiction. Thus
E ∩ N 6= 1. Again by Lemma 6, U, V � Pφ(Q), say. So U ∩ N 6= 1 6= V ∩ N
and U and V are irreducible on N ; it follows that N ≤ U ∩ V = E. But by
assumption, G = NCG(Q0) and N ∩ CG(Q0) = 1 so that G/N ≃ CG(Q0) is
L10-free, a final contradiction.

3 Groups of type I

Unfortunately, as already mentioned, this case splits into three rather dif-
ferent subcases according to the relation of q and |Q/CQ(P )| to p− 1. We start
with the easiest case that q does not divide p− 1. In the whole section we shall
assume the following.

Hypothesis I. Let G = PQ where P is a normal p-subgroup of G with
modular subgroup lattice, Q is a cyclic q-group and P = CP (Q) × [P,Q] with
[P,Q] elementary abelian and [P,Q] 6= 1.

Theorem 1. Suppose that G satisfies Hypothesis I and that q ∤ p− 1.
Then G is L10-free if and only if P = CP (Q) × N1 × · · · × Nr (r ≥ 1) and

for all i, j ∈ {1, . . . , r} the following holds.

(1) Every subgroup of Q operates trivially or irreducibly on Ni.

(2) CQ(Ni) 6= CQ(Nj) for i 6= j.

Proof. Suppose first that G is L10-free. By Maschke’s theorem, Q is completely
reducible on [P,Q] and hence [P,Q] = N1 × · · · × Nr with r ≥ 1 and Q irre-
ducible on Ni for all i ∈ {1, . . . , r}. By Lemma 2, every subgroup of Q either is
irreducible on Ni or induces a power automorphism in Ni. But since q ∤ p − 1,
there is no power automorphism of order q of an elementary abelian p-group
and hence all these induced power automorphisms have to be trivial. Thus (1)
holds and (2) follows from Lemma 1.
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To prove the converse, we consider a minimal counterexample G. Then G
satisfies (1) and (2) but is not L10-free. Every subgroup of G also satisfies (1) and
(2) or is nilpotent with modular subgroup lattice; the minimality of G implies
that every proper subgroup of G is L10-free.

If CQ(P ) 6= 1, then Q0 := Ω(Q) would be the unique subgroup of order q
in G and again the minimality of G would imply that G/Q0 would be L10-free.
Since also P is L10-free, Lemma 7 would yield that G is L10-free, a contradiction.
Thus CQ(P ) = 1 and hence there is at least one of the Ni, say N1, on which Q0

acts nontrivially and hence irreducibly. By (2), Q0 centralizes the other Nj so
that P = N1 × CP (Q0). By Lemma 8, G is L10-free, a final contradiction.

We come to the case that G satisfies Hypothesis I and q | p− 1. Then again
by Maschke’s theorem, [P,Q] = N1×· · ·×Nr (r ≥ 1) with irreducible GF (p)Q-
modules Ni; but this time some of the Ni might be of dimension 1. In fact, if the
order of the operating group Q/CQ(P ) divides p− 1, then |Ni| = p for all i (see
[3, II, Satz 3.10]). Therefore a generator x of Q induces power automorphisms
in all the Ni and [P,Q] is the direct product of nontrivial eigenspaces of x. We
get the following result in this case.

Theorem 2. Suppose that G satisfies Hypothesis I and that |Q/CQ(P )|
divides p− 1; let Q = 〈x〉.

Then G is L10-free if and only if P = CP (Q)×M1 × · · · ×Ms (s ≥ 1) with
eigenspaces Mi of x satisfying (1) and (2).

(1) CQ(Ms) < CQ(Ms−1) < · · · < CQ(M1) < Q

(2) One of the following holds:

(2a) |Mi| = p for all i ∈ {1, . . . , s},

(2b) |M1| ≥ p2, |Mi| = p for all i 6= 1 and |Ω(CP (Q))| ≤ p2,

(2c) |M2| ≥ p2, |Mi| = p for all i 6= 2 and CP (Q) is cyclic.

Proof. Suppose first that G is L10-free. As mentioned above, since |Q/CQ(P )|
divides p − 1, [P,Q] is a direct product of eigenspaces M1, . . . ,Ms of x. By
Lemma 1, CQ(Mi) 6= CQ(Mj) for i 6= j and we can choose the numbering of the
eigenspaces in such a way that (1) holds.

If |Mi| = p for all i, then (2a) is satisfied. So suppose that |Mk| ≥ p2 for some
k ∈ {1, . . . , s}. Then by (1), K := CQ(Mk) < CQ(Mi) for all i < k. Therefore if
k ≥ 3, then x would induce power automorphisms of pairwise different orders
|Q/CQ(Mi)| in Mi for i ∈ {1, 2, k}, contradicting Lemma 4. So k ≤ 2, that is,
|Mi| = p for all i > 2; and if k = 2, again Lemma 4 implies that also |M1| = p.

Let K < Q1 ≤ Q such that |Q1 : K| = q. Then K ≤ Z(H) if we put
H = (CP (Q) ×M1 × · · · ×Mk)Q1 and MkQ1/K is a P -group of order pn−1q



L10-free {p, q}-groups 63

with n ≥ 3. So if k = 2, then by (1), Q1 ≤ CQ(M1) and hence H/K =
(CP (Q) × M1)K/K ×M2Q1/K; by Lemma 3, |Ω(CP (Q) × M1)| ≤ p2. Thus
CP (Q) is cyclic and (2c) holds. Finally, if |M2| = p, then k = 1 and Lemma 3
applied to H/K yields that |Ω(CP (Q))| ≤ p2. So (2b) is satisfied and G has the
desired structure.

To prove the converse, we again consider a minimal counterexample G. Then
G satisfies (1) and (2) and L(G) contains 10 pairwise different elements A, . . . , V
satisfying (1.1)–(1.4).

Every subgroup of G is conjugate to a group H = (H ∩ P )〈y〉 with y ∈ Q.
By (1) there exists k ∈ {0, . . . , s} such that y has Mk+1, . . . ,Ms as nontrivial
eigenspaces; and (2) implies that if |H ∩Mi| ≥ p2 for some i ∈ {k + 1, . . . , s},
then either k = 0 or k = 1 and i = 2. In the first case, H trivially satisfies (1)
and (2); in the other case, G satisfies (2c) and (2b) holds for H. The minimality
of G implies :

Every proper subgroup of G is L10-free and F = G. (3)

Again let Q0 := Ω(Q). If CQ(P ) 6= 1, then G/Q0 and, by Lemma 7, also G
would be L10-free, a contradiction. Thus

CQ(P ) = 1. (4)

By (1), CQ(Ms) = CQ(P ) = 1 and Q0 centralizes M1, . . . ,Ms−1; furthermore
Q0 induces a power automorphism of order q in Ms. Thus

P =Ms × CP (Q0) and Q
G
0 =MsQ0 is a P -group. (5)

If |Ms| = p, then by Lemma 8, G would be L10-free, a contradiction. Thus
|Ms| > p and hence s ≤ 2, by (2); in fact, (2) implies that there are only two
possibilities for the Mi.

Let M0 := CP (Q). Then one of the following holds : (6)

(6a) P =M0 ×M1 where |Ω(M0)| ≤ p2 and |M1| ≥ p2,

(6b) P =M0 ×M1 ×M2 where M0 is cyclic, |M1| = p and |M2| ≥ p2.

By Lemma 6, either S, T � Pφ(Q) or U, V � Pφ(Q); say U, V � Pφ(Q). Then

U and V contain Sylow q-subgroups of G. (7)

We want to show next that E = 1. For this note that by (5), G = MsCG(Q0)
and Ms ∩ CG(Q0) = 1. Since every subgroup of Ms is normal in G, the map

φ : L(Ms)× [CG(Q0)/Q0] −→ [G/Q0]; (H,K) 7−→ HK
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is well-defined. Every L ∈ [G/Q0] is of the form L = (L∩P )Q1 where Q0 ≤ Q1 ∈
Syl q(L); since Ms = [P,Q0], we have L ∩ P = (L ∩ Ms)CL∩P (Q0). Hence
L = (L ∩Ms)CL(Q0) and the map

ψ : [G/Q0] −→ L(Ms)× [CG(Q0)/Q0];L 7−→ (L ∩Ms, CL(Q0))

is well-defined and inverse to φ. Thus [G/Q0] ≃ L(Ms)× [CG(Q0)/Q0]. By (3),
CG(Q0) is L10-free and then Lemma 5 implies that also [G/Q0] is L10-free. So
[G/Qg

0] is L10-free for every g ∈ G and this implies that E is a p-group.

Now suppose, for a contradiction, that E 6= 1. By (6), theMi are eigenspaces
(and centralizer) of every Sylow q-subgroup of G. Therefore by (7), U ∩ P and
V ∩P are direct products of their intersections with the Mi and hence this also
holds for (U ∩ P ) ∩ (V ∩ P ) = E ∩ P = E. The minimality of G implies that
EG = 1. Hence E ∩M1 = E ∩M2 = 1 and so E ≤M0 and |Ω(M0)| = p2. If two
of the groups S, T, U, V would contain Ω(M0), then Ω(M0) ≤ E, contradicting
EG = 1. Hence there are X ∈ {S, T} and Y ∈ {U, V } such that X ∩M0 and
Y ∩M0 are cyclic. Since E ≤M0, it follows that EEX∪Y = G, a contradiction.
We have shown that

E = 1 (8)

and come to the crucial property of G.

(9) Let X,Y ≤ G such that Y contains a Sylow q-subgroup of G; let

|X| = pjqk where j, k ∈ N0. Then |X ∪ Y | ≤ pj+2|Y |.

Proof. Conjugating the given situation suitably, we may assume that Q ≤ Y .
Suppose first that X is a p-group and let H = M0 and K = M1 if (6a) holds,
whereas H = M0 ×M1 and K = M2 if (6b) holds. Then X ≤ P = H ×K
where H is modular of rank at most 2 and K is elementary abelian. Let
X1 = XK ∩ H, X2 = XH ∩ K and X0 = (X ∩ H) × (X ∩ K). Then by
[4, 1.6.1 and 1.6.3], X1/X ∩ H ≃ X2/X ∩ K and X/X0 is a diagonal in the
direct product (X1 ×X2)/X0 = X1X0/X0 ×X2X0/X0. Since X2/X ∩K is ele-
mentary abelian and X1/X ∩H has rank at most 2, we have |(X1 ×X2) : X| =
|X1/X ∩H| ≤ p2.

Now X∪Y ≤ (X1×X2)∪Y . Since L(P ) is modular, any two subgroups of P
permute [4, Lemma 2.3.2]; furthermore,Q normalizesX2. So ifQ also normalizes
X1, then X1×X2 permutes with Y and |X ∪Y | ≤ |X1×X2| · |Y | ≤ |X| ·p2 · |Y |,
as desired. If Q does not normalize X1, then (6b) holds and X1 is cyclic since
every subgroup of H =M0×M1 containingM1 is normal in G. Then X1/X∩H
is cyclic and elementary abelian and hence |(X1 ×X2) : X| = |X1/X ∩H| ≤ p.
It follows that |X ∪ Y | ≤ |(X1M1 ×X2)Y | ≤ |X| · p2 · |Y |. Thus (9) holds if X
is a p-group.
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Now suppose that X is not a p-group; so X = (X∩P )Qa
1 where 1 6= Q1 ≤ Q

and a ∈ [P,Q]. If (6a) holds, then by (4), M0 = CP (Q1) and M1 is a nontrivial
eigenspace of Q1; hence X ∩P = (X ∩M0)× (X ∩M1). Since every subgroup of
M0 is permutable and every subgroup ofM1 is normal in G, we have that 〈a〉EG
and X ∪Y = (X ∩P )(Y ∩P )(Q∪Qa

1) ≤ (X ∩P )Y 〈a〉; thus |X ∪Y | ≤ pj · |Y | ·p.
Finally, if (6b) holds, then CP (Q1) = M0 or CP (Q1) = M0 ×M1 = H; in any
case, X ∩ P = (X ∩H) × (X ∩M2). Since P is abelian, (X ∩H)M1, X ∩M2

and Y ∩ P are normal in G and a = a1a2 with ai ∈ Mi. Hence X ∪ Y ≤
((X∩H)M1× (X∩M2))(Y ∩P )Q〈a2〉 and so |X∪Y | ≤ pj+1 · |Y | ·p, as claimed.

Since U and V contain Sylow q-subgroups of G, we may apply (9) with
X ∈ {S, T} and Y ∈ {U, V }. Then sinceX∩C = E = 1, we obtain, if |X| = pjqk,
that pjqk|C| = |XC| ≤ |G| = |X ∪ Y | ≤ pj+2|Y | and hence

|C : Y | ≤
p2

qk
for Y ∈ {U, V }. (10)

Similarly, A ∩ Y = 1 and therefore |A||Y | = |AY | ≤ |G| = |X ∪ Y | ≤ pj+2|Y |;
hence |A| ≤ pj+2, that is

|A : X| ≤
p2

qk
for X ∈ {S, T}. (11)

Since S ∩ T = 1 = D ∩ T , we have |S|, |D| ≤ |A : T | and |T | ≤ |A : S|; similarly
|U | ≤ |C : V | and |V | ≤ |C : U |. Thus (10) and (11) yield that

S, T,D,U, V all have order at most p2. (12)

In particular, |S| ≤ p2 and |U | ≤ pqm where qm = |Q| and hence by (9),
|G| = |S ∪ U | ≤ p5qm. If |P | = p2, then since |Ms| ≥ p2, we would have that
G = M1Q; by [5, Lemma 3.1], G then even would be L7-free, a contradiction.
Thus

p3 ≤ |P | ≤ p5. (13)

Now suppose, for a contradiction, that A � P . Since A = S ∪ T , one of these
subgroups, say S, has to contain a Sylow q-subgroup of A; so if we take X = S
above, then k ≥ 1 in (10) and (11). By (10), |C : V | < p2 and since |C : V | is a
power of p, it follows that |C : V | = p. Hence |U | ≤ p and since qm | |U |, we have
|U | = qm. By (11), |A : S| < p2 and since |A : S| is a power of p, also |A : S| = p
and hence |T | ≤ p. If T would be a q-group, then by (9), |G| = |T ∪U | ≤ p2qm,
contradicting (13). Thus |T | = p and |G| = p3qm. But then P = H ×Ms where
H E G and |H| = p ; it follows that HT E G and then |G| = |HTU | ≤ p2qm,
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again contradicting (13). Thus A is a p-group. Hence L(A) is modular and so
by (8), |A| = |S||T | = |S||D| = |T ||D|. Therefore |S| = |T | = |D| and by (13),

|A| = p2 or |A| = p4. (14)

Suppose first that |A| = p2. Then |S| = |D| = p and by (12), |U | ≤ pqm. It
follows from (9) that |G| = |S ∪ U | ≤ p4qm. So |CP (Q)| ≤ p2 and hence P
is abelian. Since A ≤ P and G = A ∪ B, also B contains a Sylow q-subgroup
of G; hence B ∩ P E G and C ∩ P E G and so D = (B ∩ P ) ∩ (C ∩ P ) E G.
Therefore C = DU and so |C : U | = |D| = p. It follows that |V | = qm and
|G| = |S ∪ V | = p3qm, by (9) and (13). Then again P = H ×Ms with H E G
and |H| = p so that |G| = |HSV | ≤ p2qm, a contradiction. Thus

|A| = p4 and |S| = |T | = |D| = p2. (15)

Suppose first that |U | = qm or |V | = qm, say |U | = qm. Then by (9), |G| = |S ∪
U | ≤ p4qm and since |A| = p4, we have A = PEG. Therefore D = A∩BEB and
D E C so that again D E G. Furthermore |V | =
|G : A| = qm and so C = U ∪ V ≤ QG. Since |B : D| = |G : A| = qm,
also B ≤ QG; hence G = B ∪ C ≤ QG so that M0 = 1, by (6). By [5, Lemma
3.1], M1Q is L10-free; hence (6b) holds and |M2| = p3. It follows that Q induces
a power automorphism either in D or in A/D; but in both groups C = DU and
G/D = (A/D)(C/D) there exist two Sylow q-subgroups generating the whole
group, a contradiction. So |U | 6= qm 6= |V | and by (12), |U | = |V | = pqm. Since
A ∩ U = E = 1, it follows that A < P ; so (13) and (15) yield that

|G| = p5qm and |U | = |V | = pqm. (16)

Since L(P ) is modular, L(S) ≃ [A/D] ≃ L(T ). So if S would be cyclic, then
A would be of type (p2, p2) and hence by (6), A ∩ Ms = 1 and |P | ≥ p6, a
contradiction. Thus S and T are elementary abelian and so P is generated by
elements of order p; by [4, Lemma 2.3.5], P is elementary abelian.

Now if (6a) holds, then M0S E G and hence G = M0SU . Since |M0| ≤ p2,
it follows from (16) that |M0| = p2 and U ∩ M0 = 1. Since U ∩ P E G, we
have U ∩ P ≤ M1 and so U ≤ QG = M1Q. Similarly, V ≤ QG and hence
C = U ∪ V ≤ QG. Since |C| ≥ |D||U | = p3qm and |M1| = p3, it follows that
C = QGEG. But then |B : D| = |G : C| = p2, so |B| = p4 and G = A∪B ≤ P ,
a contradiction.

So, finally, (6b) holds and P = M0 × M1 × M2 where |M0 × M1| ≤ p2.
This time (M0 ×M1)S E G and it follows from (16) that |M0 ×M1| = p2 and
U ∩ P ≤ M2 and V ∩ P ≤ M2. So |M2| = p3 and since U ∩ V = 1, we have
either M2 ≤ C or C ∩M2 = (U ∩ P ) × (V ∩ P ). In the first case, by (5), C
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would contain every subgroup of order q of G; since B ∩ C = D is a p-group,
it would follow that B ≤ P and hence G = A ∪ B ≤ P , a contradiction. So
|C ∩M2| = p2 and if C0, U0, V0 are the subgroups generated by the elements of
order q of C,U, V , respectively, then by (5), C0 is a P -group of order p2q and
U0, V0 are subgroups of order pq in C0. So U0 ∩ V0 6= 1, but by (8), U ∩ V = 1,
the final contradiction.

We come to the third possibility for a group satisfying Hypothesis I.

Theorem 3. Suppose that G satisfies Hypothesis I and that q | p − 1 but
|Q/CQ(P )| does not divide p− 1; let k ∈ N such that qk is the largest power of
q dividing p− 1.

Then G is L10-free if and only if there exists a minimal normal subgroup N
of order pq of G such that one of the following holds.

(1) P = CP (Q)×N where |Ω(CP (Q))| ≤ p2.

(2) P = CP (Q)×N1 ×N where N1 EG, |N1| = p and CP (Q) is cyclic.

(3) q = 2, k = 1 and P =M ×N where |M | = p2, Q is irreducible on M and
CQ(N) < CQ(M).

(4) P = M ×N where M is elementary abelian of order p2 and Q induces a
power automorphism of order q in M .

(5) P = N1 × N2 × N where Ni E G, |Ni| = p for i = 1, 2 and where
CQ(N1) < CQ(N2) = φ(Q).

Proof. Suppose first that G is L10-free. Again by Maschke’s theorem, [P,Q] =
N1 × · · · × Nr (r ≥ 1) with Q irreducible on Ni and we may assume that
CQ(Nr) ≤ CQ(Ni) for all i. Then K := CQ(P ) = CQ(Nr) and since |Q/K|
does not divide p− 1, we have that |Nr| > p. By Lemma 2 and [5, Lemma 3.1],
|Nr| = pq and |Q/K| = qk+1, or |Q/K| ≥ qk+1 = 4 in case q = 2, k = 1. We let
N := Nr and have to show that G satisfies one of properties (1)–(5).

For this put M := CP (Q) ×N1 × · · · ×Nr−1, so that P = M ×N , and let
Q1 ≤ Q such that K < Q1 and |Q1 : K| = q. By Lemma 2, Q1 induces a power
automorphism of order q in N ; by Lemma 1, CQ(N) < CQ(Ni) for all i 6= r and
hence Q1 centralizes M . So PQ1/K = MK/K × NQ1/K where NQ1/K is a
P -group of order pqq. By Lemma 3, |Ω(M)| ≤ p2; in particular, r ≤ 3.

If r = 1, then M = CP (Q) and (1) holds. If r = 2, then either |N1| = p
and CP (Q) is cyclic, that is (2) holds, or |N1| = p2 and CP (Q) = 1. In this
case, since Q is irreducible on N1 and, by Lemma 1, induces automorphisms of
different orders in N and N1, again Lemma 2 and [5, Lemma 3.1] imply that
q = 2 and k = 1; thus (3) holds.
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Finally, suppose that r = 3. Since |Ω(M)| ≤ p2, it follows thatM = N1×N2,
|N1| = |N2| = p and CP (Q) = 1. If q = 2 and k = 1, then Q = 〈x〉 induces
automorphisms of order 2 in N1 and N2; thus a

x = a−1 for all a ∈ M and
(4) holds. So suppose that q > 2 or q = 2 and k > 1. Then |Q/K| = qk+1

as mentioned above and so |φ(Q) : K| = qk divides p − 1. Thus H := Pφ(Q)
is one of the groups in Theorem 2 and by Lemma 2, φ(Q) induces a power
automorphism of order qk in N . Since [P, φ(Q)] ≤ [P,Q] = N1 × N2 × N and
CQ(N) < CQ(Ni) for i ∈ {1, 2}, N is one of the eigenspaces of xp in [P, φ(Q)].
Hence H satisfies (2b) or (2c) of Theorem 2. In the first case, N = M1 in the
notation of that theorem andN1×N2 ≤ CP (φ(Q)) since Cφ(Q)(M1) is the largest
centralizer of a nontrivial eigenspace of xp. So CQ(N1) = φ(Q) = CQ(N2) and
by Lemma 1, Q induces a power automorphism of order q in N1 ×N2; thus (4)
holds. In the other case, N =M2 and |M1| = p, so that M1 = N1, say, and then
N2 ≤ CP (φ(Q)). Thus (5) holds and G has the desired properties.

To prove the converse, we again consider a minimal counterexample G. Then
G has a minimal normal subgroup N of order pq and satisfies one of the prop-
erties (1)–(5) but is not L10-free. As in the proof of Theorem 1, by Lemma 7,
CQ(P ) = 1.

Let H be a proper subgroup of G. Then either H contains a Sylow q-
subgroup of G or H ≤ Pφ(Q). In the first case, N ≤ H or H ∩N = 1. Hence H
satisfies the assumptions of Theorem 3 or Theorem 2 or is nilpotent; the mini-
mality of G implies that H is L10-free. So suppose that H = Pφ(Q). A simple
computation shows (see [5, p. 523]) that if q > 2 or if q = 2 and k > 1, then
qk+1 is the largest power of q dividing pq − 1. Therefore in these cases, by [3, II,
Satz 3.10], a generator x of Q operates on N = (GF (pq),+) as multiplication
with an element of order qk+1 of the multiplicative group of GF (pq). The q-th
power of this element lies in GF (p) and therefore fixes every subgroup of N .
Thus φ(Q) induces a power automorphism of order qk in N . So if G satisfies
(1) or (4), then H satisfies s = 1 and (2b) of Theorem 2; the same holds if
G satisfies (2) and φ(Q) centralizes N1. If G satisfies (2) and [φ(Q), N1] 6= 1
or G satisfies (5), then (2c) of Theorem 2 holds for H. Finally, if q = 2 and
k = 1, then either φ(Q) is irreducible on N or |Q| = 4; hence H satisfies the
assumptions of Theorem 3 or 2. In all cases, Theorem 2 and the minimality of
G imply that H is L10-free.

Finally, Q0 = Ω(Q) induces a power automorphism of order q in N and
centralizes the complements of N in P given in (1)–(5). So P = N × CP (Q0)
and by Lemma 8, G is L10-free, the desired contradiction.

Note that in Theorem 1 and in (2a) of Theorem 2, CP (Q) may be an arbi-
trary modular p-group since by Iwasawa’s theorem [4, Theorem 2.3.1], a direct
product of a modular p-group with an elementary abelian p-group has modular
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subgroup lattice. In all the other cases of Theorems 2 and 3, Lemma 3 implied
that |Ω(CP (Q))| ≤ p2; in (2b) of Theorem 2 and (1) of Theorem 3, CP (Q) may
be an arbitrary modular p-group with this property.

4 Groups of type II and III

We now determine the groups of type II. Theorem 4 shows that modulo
centralizers the only such group is SL(2, 3) ≃ Q8 ⋊ C3.

Theorem 4. Let G = PQ where P is a normal Sylow 2-subgroup of G, Q
is a cyclic q-group, 2 < q ∈ P, and [P,Q] is hamiltonian.

Then G is L10-free if and only if G = M × NQ where M is an elementary
abelian 2-group, N ≃ Q8 and Q induces an automorphism of order 3 in N .

Proof. Suppose first that G is L10-free. Then L(P ) is modular and since [P,Q]
is hamiltonian, it follows from [4, Theorems 2.3.12 and 2.3.8] that P = H ×K
where H is elementary abelian and K ≃ Q8. Hence φ(P ) = φ(K) and Ω(P ) =
H×φ(P ). By Maschke’s theorem there are Q-invariant complementsM of φ(P )
in Ω(P ) and N/φ(P ) of Ω(P )/φ(P ) in P/φ(P ). Then Ω(N) = Ω(P )∩N = φ(P )
implies that N ≃ Q8 and since [P,Q] � Ω(P ), Q operates nontrivially on N .
Therefore q = 3 and Q induces an automorphism of order 3 in N .

Since P is a 2-group, G/φ(P ) is an L10-free {p, q}-group of type I with
q ∤ p− 1. By Theorem 1, P/φ(P ) = CP/φ(P )(Q)×N1 × · · · ×Nr with nontrivial
GF (2)Q-modulesNi satisfying (1) and (2) of that theorem. By (1), the subgroup
of order 3 of Q/CQ(Ni) is irreducible on Ni; therefore |Ni| = 4 and hence
CQ(Ni) = φ(Q) for all i. But then (2) implies that r = 1. It follows that
N1 = N/φ(P ) and [M,Q] ≤M ∩N = 1; thus G =M ×NQ as desired.

To prove the converse, we again consider a minimal counterexample G; let
{A, . . . , V } be a sublattice of L(G) isomorphic to L10 and satisfying (1.1)–(1.4).
The minimality of G implies that F = G and, together with Lemma 7, that
CQ(P ) = 1; hence |Q| = 3.

If A or C, say C, contains two subgroups of order 3, then NQ ≤ C and hence
C E G. Then D = A ∩ C = B ∩ C E A ∪ B = G and A/D ≃ G/C ≃ B/D are
2-groups; therefore G/D is a 2-group. Similarly, E = S∩D = U∩DES∪U = G
and S/E ≃ G/C and U/E ≃ C/D are 2-groups. Thus G/E is a modular 2-group
and hence L10-free, a contradiction.

So A and C both contain at most one subgroup of order 3 and therefore
are nilpotent. By Lemma 6, we have U, V � P , say; so U and V contain the
subgroup Q1 of order 3 of C and it follows that Q1 ≤ U ∩ V = E ≤ A. Hence
G = A ∪ C ≤ CG(Q1), a final contradiction.
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We finally come to groups of type III; more generally, we determine all L10-
free {p, 2}-groups in which Q8 operates faithfully on P .

Theorem 5. Let G = PQ where P is a normal Sylow p-subgroup with
modular subgroup lattice, Q ≃ Q8 and CQ(P ) = 1.

Then G is L10-free if and only if P = M × N where |N | = p2, Q operates
irreducibly on N and one of the following holds :

(1) p ≡ 3 (mod 4), M = CP (Q) and |Ω(M)| ≤ p2,

(2) M = CP (Q)×M1 where CP (Q) is cyclic, M1 EG and |M1| = 3,

(3) CP (Q) = 1 and M = CP (Ω(Q)) is elementary abelian of order 9.

Proof. Suppose first that G is L10-free. By [6, Lemma 2.2], P = CP (Q)× [P,Q]
and [P,Q] is elementary abelian; by Maschke’s theorem, [P,Q] = N1 × · · · ×Nr

with irreducible GF (p)Q-modules Ni. As CQ(P ) = 1, there exists i ∈ {1, . . . , r}
such that CQ(Ni) = 1; we choose the notation so that i = r and let N = Nr,
M = CP (Q)×N1 × · · · ×Nr−1 and Q0 = Ω(Q).

Clearly, |N | ≥ p2 and since CN (Q0) is Q-invariant, CN (Q0) = 1; hence
N is inverted by Q0. It follows that if X is a maximal subgroup of Q, then
CX(W ) = 1 for every minimal normal subgroup W of NX. By Lemma 1,
either X is irreducible on N or it induces a power automorphism in N . Since
Q is irreducible on N , at most one maximal subgroup of Q can induce power
automorphisms in N and hence there are at least two maximal subgroups of Q
which are irreducible on N . It follows that |N | = p2 and p ≡ 3 (mod 4).

If there would exist i ∈ {1, . . . , r − 1} such that CQ(Ni) = 1, then there
would exist a maximal subgroup X of Q which is irreducible on both Ni and N ;
but then (Ni ×N)X would be L10-free, contradicting Lemma 1. Thus N = Nr

is the unique Ni on which Q is faithful; it follows that M = CP (Q0).
Since NQ0 is a P -group of order 2p2, Lemma 3 yields that |Ω(M)| ≤ p2. So if

r = 1, then (1) holds; therefore assume that r ≥ 2. Then CG(Q0)/Q0 =MQ/Q0

is L10-free and has non-normal elementary abelian Sylow 2-subgroups of order
4. By [6, Proposition 2.6], p = 3. It follows that (2) holds if r = 2 and (3) holds
if r = 3.

To show that, conversely, all the groups with the given properties are L10-
free, we consider a minimal counterexample G to this statement and want to
apply Lemma 8.

Again since Q is irreducible on N and |N | = p2, it follows that N is inverted
by Q0 = Ω(Q). By assumption, M is centralized by Q0 and therefore we have
that P = N × CP (Q0). Furthermore every subgroup of order 4 of Q is faithful
on N and hence irreducible on N since 4 ∤ p− 1. So it remains to be shown that
every proper subgroup H of G is L10-free.
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If 8 ∤ |H|, then H ≤ PQ1 for some maximal subgroup Q1 of Q. Since Q1

is irreducible and faithful on N , the group PQ1 is L10-free by Theorem 3; thus
also H is L10-free. So suppose that H contains a Sylow 2-subgroup of G, say
Q ≤ H. Then either N ≤ H or H ∩ N = 1 and then H ≤ MQ. In the first
case, the minimality of G implies that H is L10-free. In the second case, we
may assume that H = MQ. This group even is modular if (1) holds and by
[6, Lemma 4.5], it is L10-free if (2) is satisfied. So suppose that (3) holds. Then
H/Q0 is a group of order 36 so that it is an easy exercise to show that it is
L10-free (see also Remark 2); by Lemma 7, then also H is L10-free. Thus every
proper subgroup of G is L10-free and Lemma 8 implies that G is L10-free, the
desired contradiction.

Remark 2. (a) Part (1) of Theorem 5 characterizes the L10-free {p, q}-
groups of type III and shows that also for p = 3 the corresponding groups are
L10-free.

(b) In addition, parts (2) and (3) of Theorem 5 show that for p = 3 there
are exactly three further types of L10-free {2, 3}-groups in which Q8 operates
faithfully. In these, MQ/Ω(Q) is isomorphic to

(i) C3n ×D6 × C2 (n ≥ 0), or

(ii) H × C2 where H is a P -group of order 18, or

(iii) D6 ×D6.

(c) The groups in (ii) and (iii) both are subgroups of the group G in Example
4.7 of [6] and therefore are L10-free.

Proof of (b). Clearly, the four group Q/Ω(Q) can only invert M1 in (2) of
Theorem 5; so we get the groups in (i). If (3) holds, then M = M1 × M2

where Mi EMQ and |Mi| = 3. So if CQ(M1) = CQ(M2), we obtain (ii) and
if CQ(M1) 6= CQ(M2), then M1CQ(M2) and M2CQ(M1) centralize each other
modulo Ω(Q) and hence (iii) holds.

We finally mention that by Lemma 7, to characterize also the L10-free {2, 3}-
groups with Sylow 2-subgroup Q8 operating non-faithfully on a 3-group P , it
remains to determine the L10-free {2, 3}-groups having a four group as Sylow 2-
subgroup. This, however, is the crucial case in the study of L10-free {2, 3}-groups
since by [6, Lemma 2.9], in every such group PQ we have |Ω(Q/CQ(P ))| ≤ 4.
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1 A Conjecture of Brian Hartley

Let 〈x1, x2, . . .〉 be the free group on a countable set of generators. If S is any
subset of a group G, we say that S satisfies a group identity if there exists a non-
trivial reduced word w(x1, . . . , xn) ∈ 〈x1, x2, . . .〉 such that w(g1, . . . , gn) = 1 for
all gi ∈ S. For elements y1, . . . , yn of a group G, set (y1, y2) = y−1

1 y−1
2 y1y2, the

group commutator of y1 and y2, and inductively (y1, . . . , yn) = ((y1, . . . , yn−1),
yn). Obviously, abelian groups and nilpotent groups are examples of groups
satisfying a group identity ((x1, x2) and (x1, . . . , xc) for some c, respectively).

In an attempt to give a connection between the additive and the multiplica-
tive structure of a group algebra FG of a group G over a field F , Brian Hartley
made the following famous conjecture.

Conjecture 1. Let G be a torsion group and F an infinite field. If the unit
group U(FG) of FG satisfies a group identity, then FG satisfies a polynomial
identity.

We recall that a subset R of FG satisfies a polynomial identity (PI) if there
exists a non-trivial element f(x1, . . . , xn) in the free algebra F{x1, x2, . . .} on
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non-commuting indeterminates x1, x2, . . . such that f(a1, . . . , an) = 0 for all
ai ∈ R. The conditions under which FG satisfies a polynomial identity were de-
termined in classical results due to Passman and Isaacs-Passman (see Corollaries
5.3.8 and 5.3.10 of [41]) summarized in the following

Theorem 1. Let F be a field of characteristic p ≥ 0 and G a group. Then
FG satisfies a polynomial identity if and only if G has a p-abelian subgroup of
finite index.

For the sake of completness recall that, for any prime p, a group G is said
to be p-abelian if its commutator subgroup G′ is a finite p-group, and that
0-abelian means abelian.

The Hartley’s Conjecture was first studied byWarhurst in his PhD thesis [48]
where special words satisfied by U(FG) were investigated. Pere Menal [39] sug-
gested a possible solution for some p-groups. When the field is infinite, Goncalves
and Mandel [21] verified it in the special case that the group identity is actually a
semigroup identity (that is, an identity of the form xi1xi2 · · ·xik = xj1xj2 · · ·xjl).
Giambruno, Jespers and Valenti [11] handled the characteristic 0 case as well
as the characteristic p > 0 case when G has no elements of p-power order.
In fact, under these assumptions FG is semiprime and the fact that U(FG)
satisfies a group identity forces G to be abelian. By using the Menal’s construc-
tion, Giambruno, Sehgal and Valenti [18] solved the conjecture, by proving the
following

Theorem 2. Let G be a torsion group and F an infinite field. If U(FG)
satisfies a group identity, then FG satisfies a polynomial identity.

A positive answer to Hartley’s Conjecture having been established, it was
natural to look for necessary and sufficient conditions for U(FG) to satisfy a
group identity. Clearly, satisfying a polynomial identity cannot be sufficient. We
see from Theorem 1 that if G is finite, then FG always satisfies a polynomial
identity, but if charF = 0, then U(FG) does not satisfy a group identity unless
G is abelian. The question was solved by Passman [42], by using the results of
[18], in the following

Theorem 3. Let F be an infinite field of characteristic p > 0 and G a
torsion group. Then the following are equivalent:

(i) U(FG) satisfies a group identity;

(ii) U(FG) satisfies the group identity (x, y)p
r
= 1, for some r ≥ 0;

(iii) G has a normal p-abelian subgroup of finite index and G′ is a p-group of
bounded exponent.

The fact that F is assumed to be infinite allowed the authors to apply a
Vandermonde determinant argument (see, for instance, Proposition 1 of [11]
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and the roles played by its implications in [18] and [42]). On the other hand,
by Theorem 3, for any non-abelian finite group G, if U(FG) satisfies a group
identity then G is p-abelian. This is obviously no longer true if F has finitely
many elements: in this case, for any finite group G, U(FG) is finite, hence it
satisfies a group identity. Subsequently a lot of work has been done to generalize
the above results to

• arbitrary fields

• arbitrary groups

• special subsets of U(FG)

1.1 Arbitrary Fields F

By modifying the original proof of [18], Liu [36] confirmed the Hartley’s
Conjecture for fields of all sizes. His arguments were decisive to generalize the
results of [42] to group algebras over non-necessarily infinite fields. This was
done by Liu and Passman in [37]. It turns out that the solution is different if
G′ is not a p-group. Their main results are the following.

Theorem 4. Let F be a field of characteristic p > 0 and G a torsion group.
If G′ is a p-group, then the following are equivalent:

(i) U(FG) satisfies a group identity;

(ii) U(FG) satisfies the group identity (x, y)p
r
= 1, for some r ≥ 0;

(iii) G has a p-abelian subgroup of finite index and G′ has bounded exponent.

Theorem 5. Let F be a field of characteristic p > 0 and G a torsion group.
If G′ is not a p-group, then the following are equivalent:

(i) U(FG) satisfies a group identity;

(ii) U(FG) has bounded exponent;

(iii) G has a p-abelian subgroup of finite index, G has bounded exponent and
F is a finite field.

1.2 Non-torsion Groups

In general, the Hartley’s Conjecture is not expected to hold for arbitrary
groups. For instance, if G is a torsion-free nilpotent group, then the only units
in FG are trivial, namely αg, with 0 6= α ∈ F and g ∈ G, and U(FG) is
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nilpotent. But FG need not satisfy a polynomial identity. The main obstruction
in trying to characterize group algebras of non-torsion groups whose units satisfy
a group identity is the difficulty in handling the torsion free part of the group.
It is worth noting that for any such result, a restriction will be required for
the sufficiency, pending a positive answer to the following very famous (and
difficult) conjecture due to Kaplansky.

Conjecture 2. If G is a torsion-free group and F a field, then the only
units in FG are trivial.

Anyway, for groups with elements of infinite order the question was studied
by Giambruno, Sehgal and Valenti in [20]. They proved that, if U(FG) satisfies
a group identity, then the torsion elements of G form a subgroup, T . For the
converse, a suitable restriction upon G/T is required, namely that it is a u.p.
(unique product) group, i.e., for every pair of non-empty finite subsets S1 and
S2 of G/T , there exists an element g ∈ G/T that can be uniquely written as
g = s1s2, with each si ∈ Si. We have to separate two cases according as FG
is semiprime (by virtue of Theorems 4.2.12 and 4.2.13 of [41] this means that
either charF = 0 or charF = p > 0 and G has no normal subgroups with order
divisible by p) or not.

Theorem 6. Let FG be semiprime and suppose that F is infinite or G has
an element of infinite order. If U(FG) satisfies a group identity then

(1) all the idempotents of FG are central;

(2) T is an abelian p′-subgroup of G.

Conversely, if G is a group satisfying (1) and (2) and G/T is nilpotent of class
c, then U(FG) satisfies the group identity ((x1, . . . , xc), (xc+1, . . . , x2c)) = 1.

The characteristic zero case having been dealt with, in the next result assume
that F is a field of characteristic p ≥ 2.

Theorem 7. Suppose that F is infinite or G has an element of infinite
order. We have the following

(1) If U(FG) satisfies a group identity then P , the set of the p-elements of G,
is a subgroup.

(2) If P is of unbounded exponent and U(FG) satisfies a group identity then

(a) G contains a p-abelian subgroup of finite index;

(b) G′ is of bounded p-power exponent.

Conversely, if P is a subgroup and G satisfies (a) and (b), then U(FG) satisfies
a group identity.
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(3) If P is of bounded exponent and U(FG) satisfies a group identity then

(a′) P is finite or G contains a p-abelian subgroup of finite index;

(b′) T (G/P ) is an abelian p′-subgroup and so T is a group;

(c′) every idempotent of F (G/P ) is central.

Conversely, if P is a subgroup, G satisfies (a′), (b′) and (c′) and G/T is a u.p.
group, then U(FG) satisfies a group identity.

1.3 Special Subsets of U(FG)

A natural question of interest is to ask if group identities satisfied by some
special subset of the unit group of a group algebra FG can be lifted to U(FG)
or force FG to satisfy a polynomial identity. A motivation for this study is the
classical theorem of Amitsur regarding an identity on symmetric elements of a
ring with involution forcing an identity of the whole ring. In this framework,
the symmetric units have been the subject of a good deal of attention.

Let FG be the group ring of a group G over a field F of characteristic
different from 2. If G is endowed with an involution ⋆, then it can extended
F -linearly to an involution of FG, also denoted by ⋆. An element α ∈ FG is
said to be symmetric with respect to ⋆ if α⋆ = α. We write FG+ for the set of
symmetric elements, which are easily seen to be the linear combinations of the
terms g+g⋆, for all g ∈ G. Let U+(FG) denote the set of symmetric units. Prior
to the last couple of years, attention had largely been devoted to the classical
involution induced from the map g 7→ g−1 on G. Giambruno, Sehgal and Valenti
[19] confirmed a stronger version of Hartley’s Conjecture by proving

Theorem 8. Let FG be the group algebra of a torsion group G over an
infinite field F of characteristic different from 2 endowed with the classical in-
volution. If U+(FG) satisfies a group identity, then FG satisfies a polynomial
identity.

Under the same restrictions as in the above theorem, they also obtained nec-
essary and sufficient conditions for U+(FG) to satisfy a group identity. They
get different answers depending on whether G contains a copy of the quater-
nion group Q8. More precisely, it is effected by the presence in G of a copy
of a Hamiltonian 2-group. We recall that a non-abelian group G is a Hamilto-
nian group if every subgroup of G is normal. It is well-known that in this case
G = O×E ×Q8, where O is an abelian group with every element of odd order
and E is an elementary abelian 2-group. In fact, a crucial remark for the clas-
sification of torsion group algebras FG whose symmetric units satisfy a group
identity is that, for any commutative ring R and Hamiltonian 2-group H, RH+

is commutative. The main result of [19] is the following
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Theorem 9. Let FG be the group algebra of a torsion group G over an
infinite field F of characteristic different from 2 endowed with the classical in-
volution.

(a) If charF = 0, U+(FG) satisfies a group identity if and only if G is either
abelian or a Hamiltonian 2-group.

(b) If charF = p > 2, then U+(FG) satisfies a group identity if and only if
FG satisfies a polynomial identity and either Q8 6⊆ G and G′ is of bounded
exponent pk for some k ≥ 0 or Q8 ⊆ G and

(1) the p-elements of G form a (normal) subgroup P of G and G/P is a
Hamiltonian 2-group;

(2) G is of bounded exponent 4ps for some s ≥ 0.

Obviously, group identities on U+(FG) do not force group identities on
U(FG). To see this it is sufficient to observe that, for any infinite field F of
characteristic p > 2, FQ+

8 is commutative, hence U+(FQ8) satisfies a group
identity but, according to Theorem 3, U(FG) does not satisfy a group identity.

The above results were extended to non-torsion groups in [44] under the
usual restriction for the only if part related to Kaplansky’s Conjecture. We do
not review here the statements of that paper, but we confine ourselves to report
the following result, which goes in the direction of the Hartley’s Conjecture and
Theorem 8.

Theorem 10. Let FG be the group algebra of a group G with an element of
infinite order over an infinite field F of characteristic different from 2 endowed
with the classical involution. If U+(FG) satisfies a group identity, then the set
P of p-elements of G forms a normal subgroup and, if P is infinite, then FG
satisfies a polynomial identity.

Recently, there has been a considerable amount of work on involutions of
FG obtained as F -linear extension of arbitrary group involutions on G other
than the classical one. In particular, Broche Cristo, Jespers, Polcino Milies and
Ruiz Marin have studied the interesting question as to when FG+ and FG− =
{α |α ∈ FG α⋆ = −α} the Lie subalgebra of the skew-symmetric elements
of FG are commutative ([25] and [5]). Goncalves and Passman [22] considered
the existence of bicyclic units u in the integral group rings such that the group
〈u, u⋆〉 is free. Marciniak and Sehgal in [38] had proved that, with respect to the
classical involution, 〈u, u⋆〉 is always free if u 6= 1.

In the classification results on group algebras whose symmetric units with
respect to the classical involution satisfy a group identity in some sense the
exceptional cases turned out to involve Hamiltonian 2-groups, because they
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are non-abelian groups such that the symmetric elements in the group rings
commute. When one works with linear extensions of arbitrary involutions of the
base group of the group algebra, one finds a larger class of groups such that
the symmetric elements of the related group algebra have the same property. In
order to state the next results, a definition is required. We recall that a group G
is said to be an LC-group (that is, it has the “lack of commutativity” property)
if it is not abelian, but if g, h ∈ G, and gh = hg, then at least one of g, h and
gh must be central. These groups were introduced by Goodaire. By Proposition
III.3.6 of [23], a group G is an LC-group with a unique non-identity commutator
(which must, obviously, have order 2) if and only if G/ζ(G) ∼= C2 × C2. Here,
ζ(G) denotes the centre of G.

Definition 1. A group G endowed with an involution ∗ is said to be a
special LC-group, or SLC-group, if it is an LC-group, it has a unique non-
identity commutator z, and for all g ∈ G, we have g∗ = g if g ∈ ζ(G), and
otherwise, g∗ = zg.

The SLC-groups arise naturally in the following result proved by Jespers
and Ruiz Marin [25] for an arbitrary involution on G.

Theorem 11. Let R be a commutative ring of characteristic different from
2, G a non-abelian group with an involution ∗ which is extended linearly to RG.
Then the following are equivalent:

(i) RG+ is commutative;

(ii) RG+ is the centre of RG;

(iii) G is an SLC-group.

This is crucial for the classification of torsion group algebras endowed with
an involution induced from an arbitrary involution on G with symmetric units
satisfying a group identity. The question was originally studied by Dooms and
Ruiz [8] and completely solved by Giambruno, Polcino Milies and Sehgal [14].

Theorem 12. Let F be an infinite field of characteristic p 6= 2, G a torsion
group with an involution ∗ which is extended linearly to FG. Then the symmetric
units of FG satisfy a group identity if and only if one of the following holds:

(a) FG is semiprime and G is abelian or an SLC-group;

(b) FG is not semiprime, the p-elements of G form a (normal) subgroup P ,
G has a p-abelian normal subgroup of finite index, and either

(1) G′ is a p-group of bounded exponent, or
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(2) G/P is an SLC-group and G contains a normal ∗-invariant p-subgroup
B of bounded exponent, such that P/B is central in G/B and the in-
duced involution acts as the identity on P/B.

2 Lie Properties in FG

Any associative algebra A over a field F may be regarded as a Lie algebra
by defining the Lie multiplication

[a, b] = ab− ba ∀a, b ∈ A.

For any two subspaces S and T of A, we define [S, T ] to be the additive subgroup
of A generated by all the Lie products [s, t] with s ∈ S and t ∈ T . Obviously
[S, T ] is a F -subspace of A. We can define inductively the Lie central series and
the Lie derived series of A by

A[1] = A, A[n+1] = [A[n], A]

and

δ[0](A) = A, δ[n+1](A) = [δ[n](A), δ[n](A)],

respectively. One may also enlarge the terms of this series by making them
associative at every stage. More precisely, we define by induction the series

A(1) = A, A(n+1) = 〈[A(n), A]〉

and

δ(0)(A) = A, δ(n+1)(A) = 〈[δ(n)(A), δ(n)(A)]〉,

where, for any two associative ideals S, T of A, 〈[S, T ]〉 denotes the associative
ideal of A generated by [S, T ].

We say that A is Lie nilpotent if A[n] = 0 for some integer n and, similarly,
A is Lie solvable if δ[m](A) = 0 for some integer m. In a similar fashion, A is said
to be strongly Lie nilpotent (strongly Lie solvable, respectively) if A(n) = 0 (if
δ(n)(A) = 0, respectively) for some integer n. If A is strongly Lie nilpotent, the
smallest integer m such that A[m+1] = 0 (A(m+1) = 0, respectively) is called the
Lie nilpotency class (the strong Lie nilpotency class, respectively) of A and is
denoted by clL(A) (cl

L(A), respectively). We make at once the following simple
observations: an algebra A which is strongly Lie nilpotent (solvable, respec-
tively) is Lie nilpotent (solvable, respectively) and the (strong) Lie nilpotency
property implies the (strong) Lie solvable property. It is apparent that algebras
which are Lie solvable satisfy a certain multilinear polynomial identity.
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At the beginning of 70s, thanks to the classification by Passman and Isaacs
of PI group algebras, Passi, Passman and Sehgal [40] solved the question of
when a group algebra FG of a group G over a field F is Lie solvable and Lie
nilpotent by proving the following

Theorem 13. Let FG be the group algebra of a group G over a field F of
characteristic p ≥ 0. Then FG is Lie nilpotent if and only if G is nilpotent and
p-abelian.

Theorem 14. Let FG be the group algebra of a group G over a field F of
characteristic p ≥ 0. Then FG is Lie solvable if and only if either G is p-abelian
or p = 2 and G contains a 2-abelian subgroup of index 2.

For the sake of completness we recall that the original results of [40] were
established for arbitrary group rings over commutative rings with identity. For
an overview we refer to Chapter V of [43], where the conditions so that a group
algebra satisfies the strong Lie identities were also stated, namely

Theorem 15. Let FG be the group algebra of a group G over a field F .
Then FG is strongly Lie nilpotent if and only if FG is Lie nilpotent.

Theorem 16. Let FG be the group algebra of a group G over a field F
of characteristic p ≥ 0. Then FG is strongly Lie solvable if and only if G is
p-abelian.

Another question of interest was to find necessary and sufficient conditions
so that a group algebra FG is bounded Lie Engel. We recall that, for a positive
integer n, a ring R (or a subset of it) is said to be Lie n-Engel if

[a, b, . . . , b
︸ ︷︷ ︸

n times

] = 0

for all a, b ∈ R. A ring R is bounded Lie Engel if it is Lie n-Engel for some
positive integer n. This was done by Sehgal (Theorem V.6.1 of [43]).

Theorem 17. Let FG be the group algebra of a group G over a field F .
If charF = 0, then FG is bounded Lie Engel if and only if G is abelian. If
charF = p > 0, then FG is bounded Lie Engel if and only if G is nilpotent and
G has a p-abelian normal subgroup of finite p-power index.

We have already seen in Section 1 the connection between group identities on
units and polynomial identities on the group algebra. Furthermore it is possible
frequently to reduce problems concerning specific group identities to problems
concerning specific Lie identities. This is evident in particular when the group
algebra is Lie nilpotent. To this purpose, let us consider the unit group U(FG)
of a group algebra FG and let u, v ∈ U(FG). Then

(u, v)− 1 = u−1v−1[u, v].
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A consequence of this fact is that, for any positive integer n,

γn(U(FG))− 1 ⊆ FG(n), (1)

where γn(U(FG)) denotes the n-th term of the lower central series of the
group U(FG). It immediately follows that if FG is strongly Lie nilpotent then
U(FG) is nilpotent and, if cl(U(FG)) denotes the nilpotency class of U(FG),
cl(U(FG)) ≤ clL(FG). Gupta and Levin [24] improved the result of (1) by
proving that

γn(U(FG))− 1 ⊆ 〈FG[n]〉

and, consequently, if FG is Lie nilpotent then cl(U(FG)) ≤ clL(FG). The impli-
cation between the Lie nilpotency property of FG and the nilpotency of U(FG)
is true also in the other direction, at least in the modular case (if charF = p > 0,
a group algebra FG is said to be modular if G contains at least one element of
order p) as established by Khripta [26].

Theorem 18. Let FG be the modular group algebra of a group G over a
field F . Then U(FG) is nilpotent if and only if FG is Lie nilpotent.

The semiprime case was settled by Fisher, Parmenter and Sehgal [10] and
involves more conditions.

Theorem 19. Let FG be the group algebra of a group G over a field F of
characteristic p ≥ 0. Suppose that G has no elements of order p (if p > 0). Then
U(FG) is nilpotent if and only if G is nilpotent and one of the following holds:

(a) T , the set of the elements of finite order of G, is a central subgroup of G;

(b) |F | = 2β − 1 is a Mersenne prime, T is an abelian subgroup of G of
exponent p2 − 1 and, for all x ∈ G and t ∈ T , x−1tx = t or tp.

At the end of 1980s, Shalev (see [45] for a general discussion) proposed a
systematic study of the nilpotency class of the unit group of a group algebra of a
finite p-group G over the field with p elements Fp. Even in the case in which the
group G is rather simple, U(FpG) is a finite p-group whose structure is rather
complicated and its nilpotency class in some way measures its complexity. For
a long time, a line of research has been that of considering the existence of a
given groups L involved in U(FpG). Using this approach, Coleman and Passman
[7] proved that, if G is non-abelian, then the wreath product Cp ≀ Cp, where
Cp is the group of order p, is involved in U(FpG), from which it follows that
cl(U(FpG)) ≥ p. Subsequently Baginski [2] has proved the equality in the case
in which the commutator subgroup of G has order p. Based on the original idea
of Coleman and Passman, Shalev conjectured that U(FpG) always possesses a
section isomorphic to the wreath product Cp ≀ G

′ and proved the result in [46]
when G′ is cyclic and p is odd.
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A fundamental contribution in this framework was given by the solution of
Jennings’ Conjecture on radical rings by Du [9], which allowed to conclude that,
for any field F of characteristic p and finite p-group G,

clL(FG) = cl(U(FG)). (2)

In this way, group commutator computations were replaced by ones involving Lie
commutators, which are considerably easier. But this is not the only advantage.
Indeed, in [3] Bahandari and Passi proved for an arbitrary Lie nilpotent group
algebra FG that

clL(FG) = clL(FG)

provided charF = p > 3 (it is an open question to decide if the equality holds
for arbitrary p). Thus, according to (2), when charF = p > 3 and G is a finite
p-group the computation of the nilpotency class of U(FG) is reduced to that of
clL(FG). For this an extension of Jennings’s theory provides a rather satisfac-
tory formula based on the size of the Lie dimension subgroups of the underlying
group G. In confirmation of all this, the most prominent results in this direction,
presented in [47], were just deduced on the basis of the breakthrough of Du and
Bhandari and Passi.

The equality (2) is easily seen to be satisfied when G is a (not necessarily
finite) p-group. Recently, Catino, Siciliano and Spinelli [6] settled the case in
which G is an arbitrary torsion group by proving the following

Theorem 20. Let F be a field of positive characteristic p and G a torsion
group containing an element of order p such that U(FG) is nilpotent. Then
clL(FG) = cl(U(FG)).

One cannot expect that Theorem 20 is valid for arbitrary modular group
algebras. In fact, Theorems 4.3, 4.4 and 5.2 of [4] provide examples in which the
equality does not hold.

2.1 Amitsur Theorem and Lie identities for FG+ and FG−

Let A be an F -algebra with involution ∗. A question of general interest is
which properties of A+ or A− can be lifted to A. One of the most celebrated
results in this direction is the following theorem due to Amitsur [1] dealing
with algebras satisfying a ∗-polynomial identity. We recall that an F -algebra
A with involution ∗ satisfies a ∗-polynomial identity if there exists a non-zero
polynomial f(x1, x

∗
1, . . . , xt, x

∗
t ) in F{x1, x

∗
1, x2, x

∗
2, . . .}, the free associative al-

gebra with involution on the countable set of variables {x1, x2, . . .}, such that
f(r1, r

∗
1, . . . , rt, r

∗
t ) = 0 for all ri ∈ A.
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Theorem 21. Let F be a field and A an F -algebra with involution (with
or without an identity). If A satisfies a ∗-polynomial identity, then A satisfies
a polynomial identity.

Obviously if A+ or A− satisfy a polynomial identity, then A satisfies a ∗-
polynomial identity and, by the above theorem, it is PI.

Since the second half of the 90s there have a been a number of papers devoted
to investigate the extent to which the Lie identities satisfied by the symmetric
and the skew-symmetric elements of a group algebra FG with respect to the
classical involution determine the Lie identities satisfied by the whole group
ring. Work on Lie nilpotence was begun by Giambruno and Sehgal in [16] with
the following

Theorem 22. Let FG be the group algebra of a group G with no 2-elements
over a field F of characteristic different from 2 endowed with the classical invo-
lution. Then FG+ or FG− are Lie nilpotent if and only if FG is Lie nilpotent.

It is easy enough to see that the above result does not hold if G has 2-
elements. Indeed, as observed in Section 1.3, if G is a Hamiltonian 2-group,
then the symmetric elements of FG commute. But Theorem 13 tells us that
FG is not Lie nilpotent. Moreover, if D8 denotes the dihedral group of order 8,
for any field F of odd characteristic FD−

8 is commutative, but again FD8 is not
Lie nilpotent. In [27] Lee showed that Theorem 22 can be extended to groups
not containing the quaternions, and then classified the groups G containing Q8

such that FG+ is Lie nilpotent.

Theorem 23. Let FG be the group algebra of a group G not containing
Q8 over a field F of characteristic different from 2 endowed with the classical
involution. Then FG+ is Lie nilpotent if and only if FG is Lie nilpotent.

Theorem 24. Let FG be the group algebra of a group G containing Q8

over a field F of characteristic p 6= 2 endowed with the classical involution.
Then FG+ is Lie nilpotent if and only

(a) p = 0 and G ∼= Q8 × E, where E is an elementary abelian 2-group, or

(b) p > 2 and G ∼= Q8 × E × P , where E is an elementary abelian 2-group
and P is a finite p-group.

Work on group algebras of groups containing 2-elements whose Lie subal-
gebra of skew-symmetric elements is nilpotent is much more complicated and
took a rather long time. It was begun by Giambruno and Polcino Milies in [12]
and recently completed by Giambruno and Sehgal [17] with the proof of the
following
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Theorem 25. Let FG be the group algebra of a group G over a field F of
characteristic p 6= 2 endowed with the classical involution. Then FG− is Lie
nilpotent if and only

(a) G has a nilpotent p-abelian subgroup H with (G \H)2 = 1, or

(b) G has an elementary abelian 2-subgroup of index 2, or

(c) the p-elements of G form a finite normal subgroup P and G/P is an
elementary abelian 2-group.

The same questions concerning the bounded Lie Engel property were inves-
tigated a bit later by Lee [28]. Also in this case for the symmetric elements the
answer depends on the fact that G contains Q8 or not.

Theorem 26. Let FG be the group algebra of a group G not containing
Q8 over a field F of characteristic different from 2 endowed with the classical
involution. Then FG+ is bounded Lie Engel if and only if FG is bounded Lie
Engel.

Theorem 27. Let FG be the group algebra of a group G containing Q8

over a field F of characteristic p 6= 2 endowed with the classical involution.
Then FG+ is bounded Lie Engel if and only

(a) p = 0 and G ∼= Q8 × E, where E is an elementary abelian 2-group, or

(b) p > 2 and G ∼= Q8×E×P , where E is an elementary abelian 2-group and
P is a p-group of bounded exponent having a p-abelian subgroup of finite
index.

Up to now the best known result as when the skew-symmetric elements of
a group algebra are Lie n-Engel is again in the same paper by Lee [28]. It deals
with groups without elements of even order and is in the same direction as
Theorem 22.

Theorem 28. Let FG be the group algebra of a group G with no 2-elements
over a field F of characteristic different from 2 endowed with the classical in-
volution. Then FG− is bounded Lie Engel if and only if FG is bounded Lie
Engel.

For any F -algebra with involution A it is easy to see that [A+, A+] ⊆ A−.
Thus, as A− is a Lie subalgebra of A, if it is Lie solvable then so is A+. This
simple observation is very useful for the classification of group algebras whose
skew and symmetric elements are Lie solvable. The question has been recently
investigated by Lee, Sehgal and Spinelli in [31]. It was solved under a restric-
tion upon the orders of the group elements. Their first theorem deals with the
characteristic zero case and two different prime characteristic cases.
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Theorem 29. Let FG be the group algebra of a group G with no 2-elements
over a field F of characteristic p 6= 2 endowed with the classical involution.
Suppose either that p = 0 or else p > 2 and either

(a) G has only finitely many p-elements, or

(b) G contains an element of infinite order.

Then the following are equivalent:

(i) FG+ is Lie solvable;

(ii) FG− is Lie solvable;

(iii) FG is Lie solvable.

We can assume now that the group G is torsion. No result is known that
completely covers the remaining case, but the following theorem, also from [31],
gives a partial answer.

Theorem 30. Let F be a field of characteristic p > 2. Let G be a torsion
group containing an infinite p-subgroup of bounded exponent, but no non-trivial
elements of order dividing p2 − 1. Let FG have the classical involution. Then
the following are equivalent:

(i) FG+ is Lie solvable;

(ii) FG− is Lie solvable;

(iii) FG is Lie solvable.

No result is currently known for groups with 2-elements except for what
concerns the skew-symmetric elements. In fact, if charF = 0 or charF = p > 2
and G has only finitely many p-elements, Lee, Sehgal and Spinelli (Theorem
1.2 of [31]) classified the groups G containing 2-elements such that FG− is
Lie solvable. They also observed that, in order to remove the condition that
G contains an infinite p-subgroup of bounded exponent in Theorem 30, it is
sufficient to consider the case in which G has a normal subgroup A which is
a direct product of finitely many copies of the quasicyclic p-group, Cp∞ , and
G/A = 〈Ag〉, where the order of g is a prime power. This case, however, remains
open. Indeed, the restriction can be dropped whenever G does not have Cp∞ as
a subhomomorphic image.

Of course, for any field F of characteristic different from 2, FQ+
8 is Lie

solvable (being commutative) but, according to Theorem 14, FQ8 is not. Un-
fortunately, the usual criterion that G does not contain Q8 will not be sufficient.
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Indeed, as observed after Theorem 22, if G is the dihedral group of order 8, then
FG− is commutative; hence, FG+ is Lie solvable. However, it seems reasonable
to conjecture that if G has no 2-elements, then the conclusions of Theorem 29
hold without any other restriction.

Work on Lie identities for symmetric elements is very useful also in discussing
the corresponding group identities for the symmetric units. We do not review
the details of this in the present survey, but we confine ourselves to report the
principal results showing how, in some sense, polynomial identities satisfied by
FG+ reflect group identities satisfied by U+(FG) and the latter ones can be
lifted to the whole unit group of FG. For the following result see [34].

Theorem 31. Let F be an infinite field of characteristic p > 2. Let G be a
group containing an infinite p-subgroup of bounded exponent, but no non-trivial
elements of order dividing p2 − 1. Let FG have the classical involution. Then
the following are equivalent:

(i) U+(FG) is solvable;

(ii) U(FG) is solvable;

(iii) FG+ is Lie solvable;

(iv) FG is Lie solvable.

If one replaces the hypothesis that G contains an infinite p-subgroup of
bounded exponent with the weaker assumption that G contains infinitely many
p-elements, Lee and Spinelli (Theorem 4 of [34]) proved that (i), (ii) and (iv)
are equivalent. The case in which G contains finitely many p-elements was com-
pletely solved again in [34], but for the details we refer the reader to the original
paper.

Along this line, Lee and Spinelli [35] determined the conditions under which
the subgroup generated by U+(FG), 〈U+(FG)〉, is bounded Engel, when G is
torsion and F infinite.

Theorem 32. Let FG be the group algebra of a torsion group G not con-
taining Q8 over an infinite field F of characteristic different from 2 endowed
with the classical involution. Then the following are equivalent:

(i) 〈U+(FG)〉 is bounded Engel;

(ii) U(FG) is bounded Engel;

(iii) FG+ is bounded Lie Engel;

(iv) FG is bounded Lie Engel.
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Theorem 33. Let FG be the group algebra of a torsion group G containing
Q8 over an infinite field F of characteristic different from 2 endowed with the
classical involution. Then 〈U+(FG)〉 is bounded Engel if and only if FG+ is
bounded Lie Engel.

The result by Jespers and Ruiz Marin (Theorem 11) on group algebras FG
endowed with F -linear extensions of arbitrary group involutions whose sym-
metric elements commute is fundamental for the investigation of more general
properties of FG+. The first results of this type were obtained by Giambruno,
Polcino Milies and Sehgal [13] for groups without 2-elements. They confirm that
Theorem 22 and Theorem 26 can be extended to this general setting.

Theorem 34. Let F be a field of characteristic different from 2, G a group
without 2-elements with an involution ∗ and let FG have the induced involution.
Then FG+ is Lie nilpotent (bounded Lie Engel, respectively) if and only if FG
is Lie nilpotent (bounded Lie Engel, respectively).

Obviously we cannot expect that the result is true for an arbitrary group G.
According to the discussion after Theorem 10, the answer will depend on the
presence of SLC-groups in G. A complete answer has been given by Lee, Sehgal
and Spinelli [32] with the proof of the following

Theorem 35. Let F be a field of characteristic p > 2, G a group with an
involution ∗ and let FG have the induced involution. Suppose that FG is not
Lie nilpotent. Then FG+ is Lie nilpotent if and only if G is nilpotent, and G
has a finite normal ∗-invariant p-subgroup N such that G/N is an SLC-group.

Theorem 36. Let F be a field of characteristic p > 2, G a group with an
involution ∗ and let FG have the induced involution. Suppose that FG is not
bounded Lie Engel. Then FG+ is bounded Lie Engel if and only if G is nilpotent,
G has a p-abelian ∗-invariant normal subgroup A of finite index, and G has a
normal ∗-invariant p-subgroup N of bounded exponent, such that G/N is an
SLC-group.

As when FG is endowed with the classical involution, the link between Lie
identities satisfied by FG+ and group identities satisfied by U+(FG) appears
strong. In confirmation of this, by using Theorem 12, Lee, Sehgal and Spinelli
[33] found necessary and sufficient conditions so that U+(FG) is nilpotent by
proving the following

Theorem 37. Let F be an infinite field of characteristic different from 2,
G a torsion group with an involution ∗ and let FG have the induced involution.
Then U+(FG) is nilpotent if and only if FG+ is Lie nilpotent.

We recall that Theorem 37 was originally proved for group algebras over
arbitrary fields (non-necessarily infinite) endowed with the classical involution
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by Lee [29]. The same question was investigated for non-necessarily torsion
groups by Lee, Polcino Milies and Sehgal in [30].

Finally, work on group algebras whose skew-symmetric elements satisfy a
certain Lie identity is rather complicated. Recently Giambruno, Polcino Milies
and Sehgal [15] have classified the torsion groups G with no 2-elements for which
FG− is Lie nilpotent. It turns out that the conclusion is much more involved
than for the classical involution (Theorem 22). Their main result is the following.

Theorem 38. Let F be a field of characteristic p 6= 2 and G a torsion
group with no elements of order 2. Let ∗ be an involution on FG induced by an
involution of G. Then the Lie algebra FG− is nilpotent if and only if FG is Lie
nilpotent or p > 2 and the following conditions hold:

(1) the set P of p-elements in G is a subgroup;

(2) ∗ is trivial on G/P ;

(3) there exist normal ∗-invariant subgroups A and B, 1 ≤ B ≤ A such that
B is a finite central p-subgroup of G, A/B is central in G/B with both
G/A and {a | a ∈ A aa∗ ∈ B} finite.

Acknowledgements. The author wants to thank the organizers of the con-
ference Advances in Group Theory 2009 for the invitation and E. Spinelli for
his help with the preparation of these notes. The research was supported by
NSERC Canada.
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Abstract. The distribution of quasinormal subgroups within a group is not particularly well
understood. Maximal ones are clearly normal, but little is known about minimal ones or about
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1 Introduction and development of the theory

A subgroup Q of a group G is said to be quasinormal in G if QH = HQ (the
subgroup generated by Q and H) for every subgroup H of G. In this situation
we write Q qn G. (The term permutable has also been used on occasions; but
then the natural implication, when referring to two permutable subgroups, is
that they simply permute with each other under multiplication.) Clearly nor-
mal subgroups are quasinormal, but not conversely in general. However, Ore
[11] proved that quasinormal subgroups of finite groups are subnormal ; and in
separate unpublished work, Napolitani and Stonehewer showed that quasinor-
mal subgroups of infinite groups are ascendant in at most ω+1 steps. For most
of what follows, however, we shall restrict ourselves to finite groups.

The simplest examples of non-normal quasinormal subgroups are to be found
in the non-abelian groups of order p3 and exponent p2 (for an odd prime p);
and there they are of course abelian of order p. Indeed Itô and Szép [7] proved
that a quasinormal subgroup of a finite group is always nilpotent modulo its
normal core. In 1967 and 1968, respectively, Thompson [16] and Nakamura [9]
gave core-free examples of nilpotency class 2. Then in 1971 and 1973, Bradway,
Gross and Scott [2] and Stonehewer [13] showed that any nilpotency class is
possible. Following this (in [14]), examples of core-free quasinormal subgroups
were constructed with derived length d, for any positive integer d. But by this
time a significant improvement on the Itô - Szép result had been established by
Maier and Schmid [8], viz.
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if Q is a quasinormal subgroup of a finite group G, with normal core QG,
then Q/QG lies in the hypercentre of G/QG.
It follows easily from this result that the problems associated with quasinormal
subgroups of finite groups reduce quickly to p-groups. For, if Q is quasinormal
in G and QG = 1, then it is easy to show that each Sylow p-subgroup P of Q is
also quasinormal in G. (See [12], Lemma 6.2.16.) Also, by [8], each p′-element
of G commutes with P elementwise. Therefore if S is a Sylow p-subgroup of G,
then

P is quasinormal in S

and the complexities of Q’s embedding in G reduce to those of P ’s embedding
in S.

It is worth pointing out that there is a very good reason for studying quasi-
normal subgroups in finite p-groups, apart from their curiosity value. This relates
to modular subgroups. Recall that a subgroup M of a group G is modular if,
for each subgroup U of G, the map H 7→ U ∩H is a lattice isomorphism from
[〈U,M〉/M ] to [U/(U ∩M)]. Since modular subgroups are invariant under lat-
tice isomorphisms, and since the quasinormal and modular subgroups of finite
p-groups coincide ([12], Theorem 5.1.1), it follows that in finite p-groups

quasinormal subgroups are invariant under lattice isomorphisms.

Of course normal subgroups do not satisfy this property.

2 Abelian quasinormal subgroups

In trying to understand more about quasinormal subgroups, it is surely
natural to begin with the abelian ones, even the cyclic ones. Indeed if Q is a
cyclic quasinormal subgroup of a group G, then

every subgroup of Q is also quasinormal in G.

(See [12], Lemma 5.2.11.) This result is true for all groups G, not just the
finite ones. Following a conjecture by Busetto and Napolitani, much more was
discovered about the cyclic case by Cossey and Stonehewer in [3]:-

If Q is a cyclic quasinormal subgroup of odd order in a finite group G, then
[Q,G] is abelian and Q acts by conjugation on [Q,G] as power automorphisms.
Thus the normal closure QG is abelian-by-cyclic.
A key situation in establishing this result showed that each element of [Q,G] has
the form [q, g], with q ∈ Q and g ∈ G. Note that Q does not have to be core-free
here. The case when Q has even order is considerably more complicated and is
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dealt with in [4] and [5]. There are examples where [Q,G] is not abelian, but it
is always nilpotent of class at most 2.

In moving from cyclic to abelian quasinormal subgroups Q, it is clear that
not all subgroups of Q will be quasinormal. But there are surprisingly many of
them:-

Let Q be an abelian quasinormal subgroup of G (finite or infinite). Then Qn

is quasinormal in G, provided n is odd or divisible by 4.
(See [15].) Again it is not necessary for Q to be core-free here. But there are
examples with G finite where Q2 is not quasinormal. However, now that chains
of quasinormal subgroups are beginning to appear, it is natural to ask if, given
Q qn G, a finite p-group, there are maximal chains of quasinormal subgroups
of G, passing through Q, that are composition series of G. We may even ask
if all maximal chains of quasinormal subgroups in a finite p-group have to be
composition series. We shall see below that the answers here are “no”. But for
abelian Q, a lot can be said in a positive direction.

Recall that Q qn G if and only if QX = XQ for all cyclic subgroups X of
G. Thus a significant partial stage, on the way to understanding more about
quasinormal subgroups, is to be able to make statements about quasinormal
subgroups Q of groups G of the form

G = QX, (1)

where X is cyclic. Nakamura showed in [10] that in this situation when G is a
finite p-group, Q always contains a quasinormal subgroup of G of order p. For
the moment, we shall assume that (1) holds. Moreover we shall assume that

G is a finite p-group and QG = 1.

Then clearly X contains a non-trivial normal subgroup of G and so

Ω1(X) 6 Z(G).

Here Z(G) is the centre of G and Ω1(G) denotes the subgroup generated by the
elements of order p. More generally Ωi(G) will denote the subgroup generated
by the elements of order at most pi. Then the following result, due to Cossey
and Stonehewer, will appear in the Journal of Algebra in the volume dedicated
to the memory of Karl Gruenberg:-

Theorem 1. Let Q qn G = QX, with G a finite p-group, QG = 1, Q abelian
and X cyclic. Then

(a) Wi = Ωi(Q) qn G, for all i > 1;
(b) there exists a composition series of G, passing through the Wi’s, in which

every subgroup is quasinormal in G; and
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(c) if p is odd, then there is a composition series of G, passing through the
pi-th powers of Q, in which every subgroup is quasinormal in G.

Removing the hypothesis (1) is not easy. All that we can say to date is the
following (see [6]):-

Theorem 2. If Q is a quasinormal subgroup of order p2 in a finite p-group
G (with p an odd prime), then there is a quasinormal subgroup of G of order p
lying in Q.

Unfortunately there is nothing canonical about this subgroup of order p, and
its existence was established only by an exhaustive survey of all possibilities.
Thus for our final section we shall revert to the hypothesis (1).

3 Non-abelian quasinormal subgroups

There is a universal embedding theorem for the situation (1), due to Berger
and Gross [1]:-

Given a prime p and an integer n > 1, there exists a finite p-group

G = QX

such that
(i) Q qn G, QG = 1 (so Q ∩X = 1) and X = 〈x〉 is cyclic of order pn;
(ii) if Q∗ qn G∗ = Q∗X∗, a finite p-group, with Q∗

G∗ = 1 and X∗ = 〈x∗〉 is
cyclic of order pn, then G∗ embeds in G uniquely such that Q∗ embeds in Q and
x∗ maps to x.
The group G has exponent pn and Q has exponent pn−1. Moreover

Ω1(G) = Ω1(Q)× Ω1(X)

is elementary abelian and an indecomposable X-module. Let Gn = G. Then
Gn/Ω1(Gn) ∼= Gn−1. Also Ωi(Gn) has exponent p

i. Berger and Gross define Gn

as a permutation group on the integers modulo pn and Q is the stabiliser of {0}.
Assume (for simplicity) that p is odd. In Canberra in 2007, Cossey, Stone-

hewer and Zacher began to study these groups Gn for small values of n. In
Warwick in 2009, Cossey and Stonehewer have continued this work for arbi-
trary n and a succession of results has been obtained, giving a fairly complete
picture, with a somewhat surprising conclusion.

The first non-trivial case is when n = 2. Here Q is elementary abelian of
rank p − 2. Also Ω1(G) = Q × Ω1(X) is a uniserial X-module. Thus there is a
unique chief series of G between Ω1(X) and Ω1(G) and the intersections of its
terms with Q are precisely the quasinormal subgroups of G lying in Q. So they
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form part of a composition series of G passing through Q. This is a special case
of Theorem 1 above.

Now suppose that n = 3. Here Ω1(G) = Ω1(Q)×Ω1(X) is an indecomposable
X-module of rank p(p− 1) = r+1, say. Again the quasinormal subgroups of G,
of exponent p and lying in Q, are precisely the non-trivial intersections with Q
of the terms of the unique chief series of G between Ω1(G) and Ω1(X). Denote
these intersections by

Ω1(Q) =Wr > Wr−1 > · · · > W1 (> W0 = 1).

Modulo Ω1(G), Ω2(G) is an indecomposable X-module of rank p − 1. Let
X2 = Ω2(X) and let Q1 be a quasinormal subgroup of G, of exponent p2,
lying in Q. Then

(i) Ω1(Q1) =Wi, some i > r − p; and
(ii) Q1X2 modulo Ω1(G) is an X-submodule of Ω2(G)/Ω1(G).

Conversely, for any i, j with r > i > r − p and p − 1 > j > 2, there is a
quasinormal subgroup Q1 of G, of exponent p2 lying in Q, with Ω1(Q1) = Wi

and Q1X2 modulo Ω1(G) the X-submodule of Ω2(G)/Ω1(G) of rank j.
It follows that there are maximal chains of quasinormal subgroups of G, passing
through Q, which are composition series of G.

Next we consider G = Gn for n = 4. Here Ω1(G) has rank p2(p − 1) =
s + 1, say. Again the quasinormal subgroups of G, of exponent p lying in Q,
are the non-trivial intersections with Q of the terms of the unique chief series
of G between Ω1(G) and Ω1(X), but only those of rank 6 p2 − 1. If Q1 is
a quasinormal subgroup of G, of exponent p2 lying in Q, then Ω1(Q1)X1 is
an X-submodule of Ω1(G) of rank i + 1, with i > s − p(p − 1); and Q1X2

modulo Ω1(G) is an X-submodule of Ω2(G)/Ω1(G) of rank j+1, with j > p−2.
Moreover there are quasinormal subgroups Q1 of this form for each of the above
values of i and j. But now we see that we have a ‘gap’ in a maximal chain
of quasinormal subgroups passing through Q. Indeed the largest quasinormal
subgroup of exponent p has rank p2 − 1, and the smallest of exponent p2 is
elementary abelian of rank p(p − 1)2 − 1 extended by an elementary abelian
group of rank p− 2. The former is contained in the latter and has index

pp
2(p−3)+2(p−1).

So there is no composition series of G (=G4) passing through Q and consisting
of quasinormal subgroups of G.

How big can this gap be in general? If H is a quasinormal subgroup of G (a
finite p-group) and K is a quasinormal subgroup of G maximal subject to being
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properly contained in H, then clearly K ⊳ H. But is H/K restricted in some
way? The answer is ‘no’ ! Indeed G5 has no quasinormal subgroups of exponent
p2 lying in Q. In fact Gn, for n > 5, has no quasinormal subgroups of exponent
p2 lying in Q. Since G5

∼= G6/Ω1(G6), G6 has no quasinormal subgroups of
exponent p3 lying in Q; and so on. The situation is as follows:-

Theorem 3. The only non-trivial quasinormal subgroups of Gn (n > 2),
lying in Q, have exponent

p, pn−2 and pn−1.

Thus there is a ‘black hole’ between exponent p and exponent pn−2. To sum
up, let Q1 be a quasinormal subgroup of Gn lying in Q and let Xi = Ωi(X), all
i. Then for each i with pi 6 exponent of Q1,

Ωi(Q1)Xi modulo Ωi−1(G) is a submodule of the indecomposable X-module
Ωi(G)/Ωi−1(G).

If the rank of this submodule is ri, then ri is restricted to a known range of
values. Moreover, there is a quasinormal subgroup Q1 for each choice of values
of ri within each range. The somewhat lengthy proofs will appear elsewhere.

Acknowledgements. The author is grateful to the Australian National Uni-
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